Groups and Rings III 2010

Class Exercise 2.

Please hand up solutions in the lecture on Thursday 26th March.

1. (a) If G is a finite group and $g \in G$ show that $g^{|G|}=e$.
(b) Prove Fermat's Little Theorem which says that if p is a prime and $0<a<p$ then $a^{p-1} \equiv 1 \bmod p$. [Hint: Think about the group \mathbb{Z}_{p}^{\times}.]
2. Let $g \in G$ and consider the function $\operatorname{Ad}_{g}: G \rightarrow G$ defined by $\operatorname{Ad}_{g}(x)=g x g^{-1}$. Show that Ad_{g} is an isomorphism for all $g \in G$.
3. Let $x \in G$. Prove that $C_{G}(x)=\{x \in G \mid x g=g x\}$ is a subgroup of G.
4. Determine the conjugacy classes of S_{4}. You can use the result from Lectures relating the conjugacy class of a permutation to its cycle structure. Pick an element π in each class and determine $C_{S_{4}}(\pi)$.
5. (a) If G is a group show that $Z(G)$, the centre of G, is a normal subgroup of G.
(b) Find the centre of \mathbb{H}.
(c) Call a matrix in $G L(n, \mathbb{C})$ a scalar matrix if it is a (non-zero) multiple of the identity matrix. Show that $Z(G L(n, \mathbb{C}))$ is the group of scalar matrices. (Hint: Assume X is in the centre and consider the equation $E X=X E$ where E is an elementary matrix as in Mathematics I. Try different kinds of elementary matrices.)
