Groups and Rings III 2010

Class Exercise 1.

Please hand up solutions in the lecture on Thursday 12th March.

1. Consider the group

$$GL(2,\mathbb{R}) = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \mid a,b,c,d \in \mathbb{R} \right\}$$

of 2×2 invertible matrices with real entries with binary operation being matrix multiplication. For each of the following prove if they are, or are not, subgroups of *G*. If they are subgroups show if they are or are not abelian.

- (a) The set *D* of all diagonal matrices, i.e. b = c = 0 in the definition.
- (b) The set *B* of all upper triangular matrices, i.e. c = 0 in the definition.
- (c) The set *H* of all matrices whose determinant is π .
- 2. Consider the group

$$U_{18} = \{ z \in \mathbb{C}^{\times} \mid z^{18} = 1 \}$$

with generator $\omega = \exp(i\pi/9)$.

- (a) What are the orders of ω^9 and ω^7 ?
- (b) Find all subgroups of U_{18} and draw the subgroup lattice.

3. Recall that in class we defined the quaternion group as $\mathbb{H} = \{\pm 1, \pm i, \pm j, \pm k\}$ with multiplication defined by letting the identity be 1, assuming that -1 commutes with everything else and that also

~

$$ij = -ji = k, jk = -kj = i, ki = -ik = j, i^2 = j^2 = k^2 = -1$$
 and $ijk = -1$.

- (a) Calculate the elements $ik^2(1)ji$ and $i^3j^2(-1)k$.
- (b) Find a subgroup of \mathbb{H} of order 2.
- (c) Find a subgroup of \mathbb{H} of order 4.
- (d) Find two elements of \mathbb{H} that generate \mathbb{H} . (Prove that they generate \mathbb{H}).