School of Mathematical Sciences PURE MTH 3007

Groups and Rings III, Semester 1, 2009

Week 9 Summary

8. RINGS

8.1. Definitions.

Definition 8.1. A ring is a set R with two binary operations + , • such that
(i) $(R,+)$ is an abelian group
(ii) $a(b c)=(a b) c$ for all $a, b, c \in R$ (Associative law for multiplication)
(iii) $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ for all $a, b, c \in R$ (Distributive laws).

Notes:

(1) As usual, we often omit \cdot and write $a b$ instead of $a \cdot b$.
(2) (R, \cdot) is not necessarily a group - why?
(3) The additive identity of $(R,+)$ is denoted 0 . Thus $a+0=0+a=a$ for all $a \in R$.
(4) The additive inverse of $(R,+)$ is denoted $-a$. Thus $a+(-a)=(-a)+a=0$ for all $a \in R$.
(5) R is called a commutative ring if $a b=b a$ for all $a, b \in R$.
(6) R is called a ring with identity if there is an element $1 \neq 0$ in R such that $1 \cdot a=a \cdot 1=a$ for all $a \in R$.

8.2. Examples of rings.

(1) $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are rings (commutative rings with identity).
(2) For any integer $n \geq 1, \mathbb{Z}_{n}$ is a ring under addition and multiplication $(\bmod n)$.
(3) For any integer $n \geq 1$, if R is a ring, then the set of $n \times n$ matrices $M_{n}(R)$ is a ring under the usual operations.
(4) The Gaussian integers $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$.
(5) The set $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$.
(6) The ring of real quaternions

$$
\mathbb{R}(\mathbb{H})=\left\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}, i^{2}=j^{2}=k^{2}=-1, i j=k, j k=i, k i=j\right\}
$$

The definitions and examples above were given in the Friday lecture of Week 8.

Week 8 - Lecture 18 - Tuesday 12th May .

8.3. Properties of rings.

(1) $0 . a=a .0=0$ for all $a \in R$.
(2) $a(-b)=(-a) b=-a b$ for all $a, b \in R$.
(3) $(-a)(-b)=a b$ for all $a, b \in R$.

8.4. Homomorphisms.

Definition 8.2. Let R and R^{\prime} be rings. A function $\phi: R \rightarrow R^{\prime}$ is a ring homomorphism if
(i) $\phi(a+b)=\phi(a)+\phi(b)$
(ii) $\phi(a b)=\phi(a) \phi(b)$
for all $a, b \in R$.
The homomorphism ϕ is called an isomorphism if it is $1-1$ and onto.
The kernel of ϕ is $\operatorname{ker} \phi=\{a \in R \mid \phi(a)=0\}$.

Note: The homomorphism ϕ is $1-1$ if and only if $\operatorname{ker} \phi=\{0\}$.

8.5. Subrings.

Definition 8.3. A subring S of a ring R is a subset of R that is itself a ring.

Thus S is a subring of R if $(S,+)<(R,+)$ and if S is closed under multiplication.
In particular, if $\phi: R \rightarrow R^{\prime}$ is a ring homomorphism then $\phi(R)$ and ker ϕ are subrings of R^{\prime} and R respectively.

Week 8 - Lecture 19 - Wednesday 13th May.

9. InTEGRAL DOMAINS AND FIELDS

9.1. Definitions.

Definition 9.1. Let R be a ring with identity 1. A unit of R is an element u that has a multiplicative inverse u^{-1}. So, $u u^{-1}=u^{-1} u=1$.

If every non-zero element of R is a unit then R is called a field when R is commutative, or a skewfield or division ring when R is not commutative.

Thus when R is a field, $(R,+)$ and $(R \backslash\{0\}, \cdot)$ are both abelian groups.
Definition 9.2. Let R be a ring. A non-zero element $a \in R$ is a called a zero-divisor if there exists a non-zero $b \in R$ such that $a b=0$ or $b a=0$.

The ring $\mathbb{Z}_{n}(n>1)$ has no zero-divisors if and only if n is prime.
Definition 9.3. An integral domain is a commutative ring with identity which has no zero-divisors.

Examples:

(1) \mathbb{Z} is an integral domain.
(2) If p is prime, \mathbb{Z}_{p} is an integral domain.
(3) If n is composite, Z_{n} is not an integral domain.
(4) Every field is an integral domain.

Theorem 9.4. Every finite integral domain is a field.
Corollary 9.5. If p is a prime, then \mathbb{Z}_{p} is a field.
9.2. The field of quotients of an integral domain. Let D be an integral domain. Then we can construct a field F containing D as follows:

Let

$$
S=\{(a, b) \in D \times D \mid b \neq 0\}
$$

Define an equivalence relation on S by

$$
(a, b) \sim(c, d) \text { if } a d=b c
$$

Let F be the set of equivalence classes under this relation:

$$
F=\{[(a, b)] \mid a, b \in D, b \neq 0\}
$$

Define operations of addition and multiplication on F by

$$
[(a, b)]+[(c, d)]=[(a d+b c, b d)]
$$

and

$$
[(a, b)] \cdot[(c, d)]=[(a c, b d)]
$$

Then F is a field under these operations and F contains an integral domain

$$
\bar{D}=\{[(a, 1)] \mid a \in D\}
$$

which is isomorphic to D. We usually say that $D \subset F$.
The field F is called the field of quotients of D. This field is the smallest field containing D, and is unique up to isomorphism.

Week 8 - Lecture 20 - Friday 15th May.

10. Polynomials

10.1. Basic operations. Let R be a ring. We denote by $R[x]$ the set of all polynomials in x with coefficients in R. Here x is an 'indeterminate', not a variable or element of R.

Thus

$$
R[x]=\left\{\sum_{i=0}^{\infty} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \mid a_{i} \in R, \text { only a finite number of } a_{i} \text { non-zero }\right\}
$$

The degree of the polynomial $f(x)$ is the largest i such that $a_{i} \neq 0$. It is conventional to say that the zero polynomial 0 has degree $-\infty$.
10.1.1. Addition and multiplication of polynomials. If

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\ldots \\
g(x) & =b_{0}+b_{1} x+b_{2} x^{2}+\ldots
\end{aligned}
$$

then

$$
f(x)+g(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\ldots
$$

and

$$
f(x) g(x)=d_{0}+d_{1} x+d_{2} x^{2}+\ldots
$$

where $d_{i}=\sum_{j=0}^{i} a_{j} b_{i-j}$. Note that with these definitions,

$$
\operatorname{deg} f(x) g(x) \leq \operatorname{deg} f(x)+\operatorname{deg} g(x)
$$

and

$$
\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{deg} f(x), \operatorname{deg} g(x)\}
$$

Under these operations, $R[x]$ is a ring.
If R is commutative, so is $R[x]$. If R has an identity 1 , so has $R[x]$.
More generally, we can define the polynomial ring $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ in n indeterminates $x_{1}, x_{2}, \ldots, x_{n}$ by

$$
R\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left(R\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]\right)\left[x_{n}\right] .
$$

10.2. Polynomials over an integral domain and field. If D is an integral domain, so is $D[x]$ and hence so is $D\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. In this case

$$
\operatorname{deg} f(x) g(x)=\operatorname{deg} f(x)+\operatorname{deg} g(x)
$$

If F is a field, then $F[x]$ is an integral domain but not a field.
10.2.1. The division algorithm.

Lemma 10.1 (Division algorithm for \mathbb{Z}). Let m and n be integers with $m \neq 0$. Then there are unique integers q and r such that

$$
n=q m+r
$$

and $0 \leq r<m$.
Lemma 10.2 (Division algorithm for $F[x]$). Let F be a field and $f(x), g(x)$ be polynomials in $F[x]$ with $g(x) \neq$ 0 . Then there are unique polynomials $q(x)$ and $r(x)$ in $F[x]$ such that

$$
f(x)=g(x) q(x)+r(x)
$$

and $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.

Note that $g(x) \mid f(x)$ if and only if $r(x)=0$.

