School of Mathematical Sciences PURE MTH 3007 Groups and Rings III, Semester 1, 2009

Week 9 Summary

8. Rings

8.1. Definitions.

Definition 8.1. A *ring* is a set *R* with two binary operations $+, \cdot$ such that

- (i) (R, +) is an abelian group
- (ii) a(bc) = (ab)c for all $a, b, c \in R$ (Associative law for multiplication)
- (iii) a(b+c) = ab + ac and (a+b)c = ac + bc for all $a, b, c \in R$ (Distributive laws).

Notes:

- (1) As usual, we often omit \cdot and write *ab* instead of $a \cdot b$.
- (2) (R, \cdot) is not necessarily a group why?
- (3) The additive identity of (R, +) is denoted 0. Thus a + 0 = 0 + a = a for all $a \in R$.
- (4) The additive inverse of (R, +) is denoted -a. Thus a + (-a) = (-a) + a = 0 for all $a \in R$.
- (5) *R* is called *a commutative ring* if ab = ba for all $a, b \in R$.
- (6) *R* is called *a ring with identity* if there is an element $1 \neq 0$ in *R* such that 1.a = a.1 = a for all $a \in R$.

8.2. Examples of rings.

- (1) \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are rings (commutative rings with identity).
- (2) For any integer $n \ge 1$, \mathbb{Z}_n is a ring under addition and multiplication (mod n).
- (3) For any integer $n \ge 1$, if *R* is a ring, then the set of $n \times n$ matrices $M_n(R)$ is a ring under the usual operations.
- (4) The Gaussian integers $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$
- (5) The set $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$
- (6) The ring of real quaternions

$$\mathbb{R}(\mathbb{H}) = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}, i^2 = j^2 = k^2 = -1, ij = k, jk = i, ki = j\}.$$

The definitions and examples above were given in the Friday lecture of Week 8.

Week 8 — Lecture 18 — Tuesday 12th May.

8.3. Properties of rings.

- (1) 0.a = a.0 = 0 for all $a \in R$.
- (2) a(-b) = (-a)b = -ab for all $a, b \in R$.
- (3) (-a)(-b) = ab for all $a, b \in R$.

8.4. Homomorphisms.

Definition 8.2. Let *R* and *R'* be rings. A function $\phi : R \to R'$ is a *ring homomorphism* if

(i) $\phi(a+b) = \phi(a) + \phi(b)$ (ii) $\phi(ab) = \phi(a)\phi(b)$

for all $a, b \in R$.

The homomorphism ϕ is called an *isomorphism* if it is 1 - 1 and onto.

The kernel of ϕ is ker $\phi = \{a \in R \mid \phi(a) = 0\}.$

Note: The homomorphism ϕ is 1 - 1 if and only if ker $\phi = \{0\}$.

8.5. Subrings.

Definition 8.3. A *subring S* of a ring *R* is a subset of *R* that is itself a ring.

Thus *S* is a subring of *R* if (S, +) < (R, +) and if *S* is closed under multiplication.

In particular, if $\phi : R \to R'$ is a ring homomorphism then $\phi(R)$ and ker ϕ are subrings of R' and R respectively.

Week 8 — Lecture 19 — Wednesday 13th May.

9. INTEGRAL DOMAINS AND FIELDS

9.1. Definitions.

Definition 9.1. Let *R* be a ring with identity 1. A *unit* of *R* is an element *u* that has a multiplicative inverse u^{-1} . So, $uu^{-1} = u^{-1}u = 1$.

If every non-zero element of *R* is a unit then *R* is called a *field* when *R* is commutative, or a *skewfield* or *division ring* when *R* is not commutative.

Thus when *R* is a field, (R, +) and $(R \setminus \{0\}, \cdot)$ are both abelian groups.

Definition 9.2. Let *R* be a ring. A non-zero element $a \in R$ is a called a *zero-divisor* if there exists a non-zero $b \in R$ such that ab = 0 or ba = 0.

The ring \mathbb{Z}_n (n > 1) has no zero-divisors if and only if n is prime.

Definition 9.3. An *integral domain* is a commutative ring with identity which has no zero-divisors.

Examples:

- (1) \mathbb{Z} is an integral domain.
- (2) If *p* is prime, \mathbb{Z}_p is an integral domain.
- (3) If *n* is composite, Z_n is not an integral domain.
- (4) Every field is an integral domain.

Theorem 9.4. *Every finite integral domain is a field.*

Corollary 9.5. *If* p *is a prime, then* \mathbb{Z}_p *is a field.*

9.2. **The field of quotients of an integral domain.** Let *D* be an integral domain. Then we can construct a field *F* containing *D* as follows:

Let

$$S = \{(a, b) \in D \times D \mid b \neq 0\}.$$

Define an equivalence relation on *S* by

 $(a,b) \sim (c,d)$ if ad = bc.

Let *F* be the set of equivalence classes under this relation:

 $F = \{ [(a, b)] \mid a, b \in D, b \neq 0 \}.$

Define operations of addition and multiplication on *F* by

[(a,b)] + [(c,d)] = [(ad + bc,bd)]

$$[(a,b)] \cdot [(c,d)] = [(ac,bd)].$$

Then F is a field under these operations and F contains an integral domain

$$\overline{D} = \{ [(a,1)] \mid a \in D \}$$

which is isomorphic to *D*. We usually say that $D \subset F$.

The field *F* is called the *field of quotients* of *D*. This field is the smallest field containing *D*, and is unique up to isomorphism.

Week 8 — Lecture 20 — Friday 15th May.

10. POLYNOMIALS

10.1. **Basic operations.** Let *R* be a ring. We denote by R[x] the set of all *polynomials* in *x* with coefficients in *R*. Here *x* is an 'indeterminate', not a variable or element of *R*.

Thus

$$R[x] = \left\{ \sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots \mid a_i \in \mathbb{R}, \text{ only a finite number of } a_i \text{ non-zero} \right\}$$

The *degree* of the polynomial f(x) is the largest *i* such that $a_i \neq 0$. It is conventional to say that the zero polynomial 0 has degree $-\infty$.

10.1.1. Addition and multiplication of polynomials. If

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots$$

then

$$f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots$$

and

 $f(x)g(x) = d_0 + d_1x + d_2x^2 + \dots$

where $d_i = \sum_{j=0}^{i} a_j b_{i-j}$. Note that with these definitions,

$$\deg f(x)g(x) \le \deg f(x) + \deg g(x)$$

and

 $\deg(f(x) + g(x)) \le \max\{\deg f(x), \deg g(x)\}.$

Under these operations, R[x] is a ring.

If *R* is commutative, so is R[x]. If *R* has an identity 1, so has R[x].

More generally, we can define the polynomial ring $R[x_1, x_2, ..., x_n]$ in *n* indeterminates $x_1, x_2, ..., x_n$ by

$$R[x_1, x_2, \dots, x_n] = (R[x_1, x_2, \dots, x_{n-1}])[x_n]$$

10.2. Polynomials over an integral domain and field. If *D* is an integral domain, so is D[x] and hence so is $D[x_1, x_2, ..., x_n]$. In this case

$$\deg f(x)g(x) = \deg f(x) + \deg g(x).$$

If *F* is a field, then F[x] is an integral domain but *not* a field.

4

10.2.1. The division algorithm.

Lemma 10.1 (Division algorithm for \mathbb{Z}). Let *m* and *n* be integers with $m \neq 0$. Then there are unique integers *q* and *r* such that

$$n = qm + r$$

and $0 \le r < m$.

Lemma 10.2 (Division algorithm for F[x]). Let F be a field and f(x), g(x) be polynomials in F[x] with $g(x) \neq 0$. Then there are unique polynomials q(x) and r(x) in F[x] such that

$$f(x) = g(x)q(x) + r(x)$$

and $\deg r(x) < \deg g(x)$.

Note that $g(x) \mid f(x)$ if and only if r(x) = 0.