The Lemma below was actually proved in the Friday lecture of Week 7.

Lemma 7.2. Let G be a finite p-group acting on the finite set X. Let

$$ F = \{ x \in X \mid g \ast x = x \text{ for all } g \in G \} . $$

Then $|F| \equiv |X|$ (mod p).

Week 8 — Lecture 18 — Tuesday 5th May.

7.3. Sylow’s second and third theorems.

Theorem 7.3. (Sylow’s Second Theorem) Let P be a Sylow p-subgroup of the finite group G of order p^mr, where r is coprime to p. If Q is any p-subgroup of G (that is, $|Q|$ is a power of p) then $Q < gPg^{-1}$ for some $g \in G$.

In particular, all Sylow p-subgroups are conjugate.

Lemma 7.4.

(1) Let P be a Sylow p-subgroup of G and suppose $P \trianglelefteq G$. Then P is the only Sylow p-subgroup of G.

(2) In any finite group G, P is the only Sylow p-subgroup of $N_G(P)$.

Theorem 7.5. (Sylow’s Third Theorem) Let P be a Sylow p-subgroup of G. Then the number of Sylow p-subgroups of G is $(G : N_G(P))$. Further, $(G : N_G(P)) \equiv 1$ (mod p).

Week 8 — Lecture 19 — Friday 8th May.

Theorem 7.6. (Cauchy’s Theorem) Let p divide $|G|$. Then G contains an element of order p.

Corollary 7.7. If p divides $|G|$ then G has a subgroup of order p.

7.4. Examples. We consider the structure of groups of order pq, where p and q are distinct odd primes, and groups of order $2p$.