School of Mathematical Sciences PURE MTH 3007

Groups and Rings III, Semester 1, 2009

Week 8 Summary

The Lemma below was actually proved in the Friday lecture of Week 7.
Lemma 7.2. Let G be a finite p-group acting on the finite set X. Let

$$
F=\{x \in X \mid g * x=x \text { for all } g \in G\} .
$$

Then $|F| \equiv|X|(\bmod p)$.

Week 8 - Lecture 18 - Tuesday 5th May.

7.3. Sylow's second and third theorems.

Theorem 7.3. (Sylow's Second Theorem) Let P be a Sylow p-subgroup of the finite group G of order $p^{m} r$, where r is coprime to p. If Q is any p-subgroup of G (that is, $|Q|$ is a power of p) then $Q<g \mathrm{Pg}^{-1}$ for some $g \in G$.

In particular, all Sylow p-subgroups are conjugate.

Lemma 7.4.

(1) Let P be a Sylow p-subgroup of G and suppose $P \triangleleft G$. Then P is the only Sylow p-subgroup of G.
(2) In any finite group G, P is the only Sylow p-subgroup of $N_{G}(P)$.

Theorem 7.5. (Sylow's Third Theorem) Let P be a Sylow p-subgroup of G. Then the number of Sylow p subgroups of G is $\left(G: N_{G}(P)\right)$. Further, $\left(G: N_{G}(P)\right) \equiv 1(\bmod p)$.

Week 8 - Lecture 19 - Friday 8th May.
Theorem 7.6. (Cauchy's Theorem) Let p divide $|G|$. Then G contains an element of order p.
Corollary 7.7. If p divides $|G|$ then G has a subgroup of order p.
7.4. Examples. We consider the structure of groups of order $p q$, where p and q are distinct odd primes, and groups of order $2 p$.

