School of Mathematical Sciences PURE MTH 3007 Groups and Rings III, Semester 1, 2009

Week 8 Summary

The Lemma below was actually proved in the Friday lecture of Week 7.

Lemma 7.2. Let *G* be a finite *p*-group acting on the finite set *X*. Let

 $F = \{x \in X \mid g \ast x = x \text{ for all } g \in G\}.$

Then $|F| \equiv |X| \pmod{p}$.

Week 8 — Lecture 18 — Tuesday 5th May.

7.3. Sylow's second and third theorems.

Theorem 7.3. (Sylow's Second Theorem) Let *P* be a Sylow *p*-subgroup of the finite group *G* of order $p^m r$, where *r* is coprime to *p*. If *Q* is any *p*-subgroup of *G* (that is, |Q| is a power of *p*) then $Q < gPg^{-1}$ for some $g \in G$.

In particular, all Sylow p-subgroups are conjugate.

Lemma 7.4.

(1) Let P be a Sylow p-subgroup of G and suppose $P \triangleleft G$. Then P is the only Sylow p-subgroup of G. (2) In any finite group G, P is the only Sylow p-subgroup of $N_G(P)$.

Theorem 7.5. (Sylow's Third Theorem) Let *P* be a Sylow *p*-subgroup of *G*. Then the number of Sylow *p*-subgroups of *G* is $(G : N_G(P))$. Further, $(G : N_G(P)) \equiv 1 \pmod{p}$.

Week 8 — Lecture 19 — Friday 8th May.

Theorem 7.6. (Cauchy's Theorem) Let p divide |G|. Then G contains an element of order p.

Corollary 7.7. If p divides |G| then G has a subgroup of order p.

7.4. **Examples.** We consider the structure of groups of order pq, where p and q are distinct odd primes, and groups of order 2p.