School of Mathematical Sciences PURE MTH 3007 Groups and Rings III, Semester 1, 2009

Week 7 Summary

This material was covered in Lecture 14

6. GROUPS ACTING ON SETS

6.1. Introduction.

Definition 6.1. Let *G* be a group and *X* a set. An *action of G on X* is a map $G \times X \to X$, $(g, x) \mapsto g * x$ such that

(i) for each $g_1, g_2 \in G$ and $x \in X$,

$$(g_1g_2) * x = g_1 * (g_2 * x)$$

(ii) for each $x \in X$, e * x = x.

If there is no confusion, we may write gx for g * x.

Note:

- (1) S_n acts on $X = \{1, 2, ..., n\}$.
- (2) *G* acts on X = G by
 - (a) conjugation: $g * x = gxg^{-1}$
 - (b) left multiplication: g * x = gx.
- (3) If H < G, *G* acts on the left cosets of *H* by left multiplication: g * xH = gxH.

(4) If G = GL(n, F) and V is a vector space of dimension n over F, then G acts on V by matrix multiplication.

Definition 6.2. If *G* acts on *X* then for any $x \in X$, $[x] = \{g * x \mid g \in G\}$ is called an *orbit* in *X* of the action.

If there is only one orbit then we say *G* is *transitive* on *X*.

Week 6 — Lecture 15 — Tuesday 28th April.

Proposition 6.3. *The orbits of a group G acting on a set X are the equivalence classes under the equivalence relation on X:*

 $x \sim y$ if and only if y = g * x for some $g \in G$.

Hence X is the disjoint union of the distinct orbits.

Definition 6.4. If *G* acts on *X* then for any $x \in X$, the *stabilizer* of $x \in X$ is

$$S_G(x) = \{g \in G \mid g * x = x\}.$$

The stabilizer of x is a subgroup of G. It is sometimes called the *isotropy subgroup* of x, and sometimes denoted G_x .

6.2. The Orbit-Stabilizer Theorem.

Theorem 6.5. (Orbit-Stabilizer Theorem) *Let G act on X. Then for any* $x \in X$ *,*

 $|[x]| = (G: S_G(x)).$

6.3. Burnside's Theorem.

Theorem 6.6. (Burnside's Theorem) Let G be a finite group and X a finite set such that G acts on X. Let r be the number of distinct orbits of G on X and for each $g \in G$ let

$$X_g = \{x \in X \mid g \ast x = x\},\$$

the set of all elements in X fixed by g. Then

$$r|G| = \sum_{g \in G} |X_g|$$

6.4. Cayley's Theorem.

Theorem 6.7. (Cayley's Theorem) Every group is isomorphic to a group of permutations.

6.4.1. Application of Burnside's theorem to chemistry.

Week 6 — Lecture 17 — Friday 1st May.

7. THE SYLOW THEOREMS

7.1. **Sylow's first theorem.** The results of this chapter are due to the Norwegian mathematician Ludvig Sylow (1832 – 1918), though the proofs have been modernized. Along with Lagrange's theorem, they are the most important results of finite group theory – Lagrange's theorem gives a necessary condition for subgroups, and Sylow's theorems give sufficient conditions.

Theorem 7.1. Sylow's First Theorem Let *G* be a finite group of order $p^m r$, where *p* is a prime and *r* is coprime to *p*. Then *G* has a subgroup *P* of order p^m .

Such a subgroup *P*, the existence of which is guaranteed by this theorem, is called a *Sylow p-subgroup* of *G*.