School of Mathematical Sciences PURE MTH 3007

Groups and Rings III, Semester 1, 2009

Week 6 Summary

Week 6 - Lecture 14 - Tuesday 7th April.

To determine the rank and torsion invariants of G we use the following procedure.
Write the exponents $n_{i j}$ in a matrix N, with the j th relation corresponding to the j th column. There must be at least as many columns as rows, so we have an $m \times n$ matrix with $n \geq m$. (If not, add columns of zeros to make $n \geq m$).

We then use certain row and column operations to reduce N to a diagonal matrix in which the diagonal entries are $d_{1}, \ldots, d_{t}, 0, \ldots, 0$ and the successive non-zero entries divide one another: $d_{1}\left|d_{2}\right| \ldots \mid d_{t}$. Then the entries $d_{1}, \ldots d_{t}$ are the torsion invariants of G and the number of zeros is the rank of G.

5.2.1. Permissible row and column operations.

(i) Interchange any two rows: $R_{i}, R_{j} \leadsto R_{j}, R_{i}$.
(ii) Multiply any row by -1 : $R_{i} \leadsto-R_{i}$.
(iii) Add to any row an integer multiple of another row: $R_{i} \leadsto R_{i}+c R_{j}, c \in \mathbb{Z}$.

The corresponding column operations are also permitted.
It is not permissible to:
(i) Multiply a row by c, if $c \neq \pm 1$.
(ii) Replace R_{i} by $c R_{i}+d R_{j}$, if $c \neq \pm 1$.
5.2.2. Why does it work? Row operations correspond to changing the generators, column operations to manipulating the relations. Specifically, the row operation $R_{i} \leadsto R_{i}+c R_{j}$ corresponds to replacing generator x_{j} by $y_{j}=x_{j} x_{i}^{-c}$.
5.2.3. Procedure. The initial aim is to get the g.c.d. of all entries in the matrix to the $(1,1)$ position, and then use this entry as a pivot to eliminate all other entries in the first row and column. Then repeat this procedure on the $(m-1) \times(n-1)$ submatrix obtained by removing the first row and column. Continue.

To get the g.c.d. to the $(1,1)$ position, it will in general be necessary to use the Division Algorithm several times on the rows and/or columns, as in the following examples:

$$
\begin{gathered}
{\left[\begin{array}{cc}
7 & \cdots \\
30 & \cdots
\end{array}\right] \sim\left[\begin{array}{ll}
7 & \cdots \\
2 & \cdots
\end{array}\right]\left(R_{2} \leadsto R_{2}-4 R_{1}\right) \sim\left[\begin{array}{ll}
1 & \cdots \\
2 & \cdots
\end{array}\right]\left(R_{1} \leadsto R_{1}-3 R_{2}\right) .} \\
{\left[\begin{array}{cc}
15 & 0 \\
0 & 20
\end{array}\right] \sim\left[\begin{array}{cc}
15 & 0 \\
20 & 20
\end{array}\right] \sim\left[\begin{array}{cc}
15 & 0 \\
5 & 20
\end{array}\right] \sim\left[\begin{array}{cc}
5 & 20 \\
15 & 0
\end{array}\right] \sim\left[\begin{array}{cc}
5 & 0 \\
0 & -60
\end{array}\right] \sim\left[\begin{array}{cc}
5 & 0 \\
0 & 60
\end{array}\right] .}
\end{gathered}
$$

Example 1: Find the torsion invariants of the abelian group $C_{8} \times C_{20}$.

Solution:

$C_{8} \times C_{20} \simeq C_{8} \times C_{4} \times C_{5} \simeq C_{4} \times C_{40}$. The torsion invariants are 4 and 40.
Example 2: Find the torsion invariants and rank of the abelian group

$$
G=\left\langle a, b, c, d \mid a^{-3} b c^{6} d^{4}=a^{-1} b^{3} c^{2} d^{4}=a^{14} b^{-2} c^{-8} d^{4}=1\right\rangle .
$$

Solution:

$$
\left[\begin{array}{rrrr}
-3 & -1 & 14 & 0 \\
1 & 3 & -2 & 0 \\
6 & 2 & -8 & 0 \\
4 & 4 & 4 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 3 & -2 & 0 \\
0 & 8 & 8 & 0 \\
0 & -16 & 4 & 0 \\
0 & -8 & 12 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 8 & 8 & 0 \\
0 & 0 & 20 & 0 \\
0 & 0 & 20 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 0 & 20 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

that is, $C_{1} \times C_{8} \times C_{20} \times C_{\infty}$, but this is not yet in the required form. Continuing, the matrix is

$$
\sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 20 & 20 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 4 & 20 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 4 & 20 & 0 \\
0 & 8 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 4 & 20 & 0 \\
0 & 0 & -40 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 40 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

So the torsion invariants are 4 and 40 , and the rank is 1 .

