Week 5 Summary

Week 5 — Lecture 11 — Tuesday 31 March.

4.2. **Direct products of groups.** Let *H* and *K* be groups. Then we can make the cartesian product

$$H \times K = \{(h, k) \mid h \in H, k \in K\}$$

into a group, called the (external) direct product of H and K, by defining

 $(h,k) \cdot (h',k') = (hh',kk')$

for all $h, h' \in H, k, k' \in K$. Then $H \times K$ has subgroups

 $H_0 = \{(h, e) \mid h \in H\} \simeq H,$ $K_0 = \{(e, k) \mid k \in K\} \simeq K.$

Proposition 4.2. Let H and K be groups as above. Then:

- (1) $H_0 \cap K_0 = \{(e, e)\} = \{e\}.$
- (2) For all $h \in H, k \in K$ we have $(h, e) \cdot (e, k) = (h, k) = (e, k) \cdot (h, e)$. Hence $G = H_0K_0$.
- (3) We write (h, e) as h and (e, k) as k, and identify H_0 and K_0 with H and K. Then every $g \in G$ can be written uniquely as g = hk for $h \in H, k \in K$.
- (4) $H \triangleleft G$ and $K \triangleleft G$.
- (5) $|G| = |H \times K| = |H|.|K|.$
- (6) $G/H \simeq K$ and $G/K \simeq H$.

Week 5 — Lecture 12 — Wednesday 1 April.

4.3. The internal direct product.

Definition 4.3. A group *G* is *decomposable* if it is isomorphic to a direct product of two proper non-trivial subgroups. Otherwise *G* is indecomposable.

If *G* is decomposable then *G* has subgroups *H* and *K* such that

(i) $H \cap K = \{e\}$

(ii)
$$G = HK$$

(iii) hk = kh for all $h \in H, k \in K$.

Then we write $G = H \times K$ and say that *G* is the *(internal) direct product* of *H* and *K*.

Equivalently, if (iii)' is the statement:

(iii)' $H \lhd G$ and $K \lhd G$

then (i), (ii) and (iii)' imply that $G = H \times K$.

5. FINITELY GENERATED ABELIAN GROUPS

5.1. The fundamental theorem.

Definition 5.1. A group *G* is *finitely generated* if there is some finite subset *X* of *G* such that $G = \langle X \rangle$.

Thus $G = \langle x_1, ..., x_n \rangle$, the set of all finite products of the x_i s and their inverses.

Definition 5.2. If every element of a group *G* has finite order then *G* is called a *torsion group*. If only the identity *e* has finite order then *G* is called a *torsion-free group*. If *G* is an abelian group, then the subgroup of *G* consisting of all elements of finite order is called the *torsion subgroup* of *G* and denoted Tor(G).

Theorem 5.3. (Fundamental Theorem of Finitely Generated Abelian Groups) *Every finitely generated abelian group is isomorphic to a direct product of cyclic groups of the form*

 $C_{n_1} \times C_{n_2} \times \ldots \times C_{n_s} \times C_{\infty} \times \ldots \times C_{\infty}$,

where each $n_i = p_i^{a_i}$ for some prime p_i and $a_i \in \mathbb{N}$. (The p_i need not be distinct.)

Week 5 — Lecture 13 — Friday 3 April.

Note:

- (1) The torsion subgroup of *G* is $Tor(G) = C_{n_1} \times C_{n_2} \times ... \times C_{n_s}$. Thus $|T| = n_1 n_2 ... n_s$.
- (2) The group $F = \underbrace{C_{\infty} \times ... \times C_{\infty}}_{f \text{ factors}}$ is torsion free. (It is called a free abelian group of rank *f*.) The number

of factors f is the (free) rank or Betti number of G. G is finite if and only if f = 0.

(3) Since $C_n \times C_m \simeq C_{nm}$ if *m* and *n* are coprime, we can also write

$$T \simeq C_{d_1} \times \ldots \times C_{d_t}$$

where $d_1 | d_2 | ... | d_t$ and $|T| = d_1 d_2 ... d_t$. The d_i , known as the *torsion invariants* of *G*, are unique.

(4) Two finitely generated abelian groups are isomorphic if and only if they have the same free rank and the same torsion invariants.

Corollary 5.4. *The indecomposable finite abelian groups are precisely the cyclic groups of order* p^a *, where p is prime, a* $\in \mathbb{N}$ *.*

Corollary 5.5. If G is a finite abelian group and m divides |G| then G has a subgroup of order m.

5.2. Generators and relations for abelian groups. Suppose that an abelian group is defined by generators $x_1, x_2, ..., x_m$ and a number of relations of the form

$$\begin{array}{rcl} x_1^{n_{11}} x_2^{n_{21}} \dots x_m^{n_{m1}} &= e \\ x_1^{n_{12}} x_2^{n_{22}} \dots x_m^{n_{m2}} &= e \\ & \vdots & \vdots \\ x_1^{n_{1n}} x_2^{n_{2n}} \dots x_m^{n_{mn}} &= e. \end{array}$$

We also know that $[x_i, x_j] = e$ for all i, j as G is abelian.