School of Mathematical Sciences PURE MTH 3007 Groups and Rings III, Semester 1, 2009

Week 4 Summary

Week 4 — Lecture 9 — Tuesday 24th March.

3.3. Related results.

Lemma 3.6. Let G be a group such that G/Z(G) is cyclic. Then G is abelian.

Corollary 3.7. G/Z(G) cannot be cyclic of order greater than one.

Lemma 3.8. Every group of order p^2 is abelian.

Theorem 3.9. Let $N \triangleleft G$. Then there is a 1-1 correspondence between subgroups of G containing N and subgroups of G/N, namely

if
$$N < H < G$$
 then $H \leftrightarrow H/N$.

Every subgroup of G/N is of form H/N for some subgroup H of G containing N.

Also, $H \triangleleft G$ if and only if $H/N \triangleleft G/N$.

3.4. Composition series.

Definition 3.10. Let $N \triangleleft G$. Then *N* is called a *maximal normal subgroup* of *G* if the only normal subgroup of *G* that properly contains *N* is *G* itself.

Then *N* is a maximal normal subgroup of *G* if and only if G/N is simple.

Definition 3.11. A *composition series* of a group *G* is a sequence of subgroups

 $\{e\} = N_{k+1} \triangleleft N_k \triangleleft \ldots \triangleleft N_2 \triangleleft N_1 \triangleleft N_0 = G,$

such that each N_{i+1} is a maximal normal subgroup of N_i . That is, each factor group N_i/N_{i+1} is simple.

Theorem 3.12. *The* Jordan-Hölder Theorem *states that for any composition series, the number of factors k and the set of factor groups* $\{N_i/N_{i+1} | i = 0, 1, ..., k\}$ *is unique.*

Week 4 — Lecture 10 — Friday 27th March.

3.5. **The derived group.** Let *X* be a subset of *G*. Then $H = \langle X \rangle$ denotes the smallest subgroup of *G* containing *X*. We say that *H* is *generated* by *X*. Then *H* is the set of all products of the form $x_i^{n_i} ... x_j^{n_j}$, where $x_i, ..., x_j \in X$ and $n_i, ..., n_j \in \mathbb{Z}$.

Definition 3.13. The commutator of the elements $g, h \in G$ is $[g, h] = ghg^{-1}h^{-1}$. The *derived group* or *commutator subgroup* of *G* is the group

$$G' = [G,G] = \langle [g,h] \mid g,h \in G \rangle.$$

Note 3.1.

(1) Elements g and h commute if and only if [g,h] = e.

(2) $[g,h]^{-1} = [h,g].$

(3) $G' = \{e\}$ if and only if G is abelian.

Proposition 3.14. Let G be a group and G' its commutator subgroup. Then:

(a) $G' \lhd G$.

(b) G/G' is abelian.

(c) If $N \triangleleft G$ and G/N is abelian, then G' < N. Thus G' is the smallest normal subgroup of G with abelian factor group.

4.1. The isomorphism theorem. Let *H* and *K* be subgroups of the group *G*. We define $HK = \{hk \mid h \in H, k \in K\}.$

Then HK < G if and only if HK = KH.

In particular, if $H \triangleleft G$ or $K \triangleleft G$ then HK < G.

If HK < G, then

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Theorem 4.1. (The Isomorphism Theorem) *Let H and K be subgroups of G with* $H \triangleleft G$ *. Then* $HK/H \simeq K/H \cap K$ *.*