Week 3 Summary

```
Week 3 — Lecture 6 — Tuesday 17th March.
```

Note 2.2.

(1) A conjugate of *x* has the same order as *x*. (Assignment 1)

(2) We say that *x* is *conjugate to y* if *y* is a conjugate of *x*, it if there is some $g \in G$ with $y = gxg^{-1}$.

Proposition 2.10. *Conjugacy is an equivalence relation on G.*

Note 2.3*.* The equivalence class of *x* is called the *conjugacy class* of *x* and denoted [*x*]. The conjugacy classes partition *G*:

$$G = [1] \cup [x] \cup \dots \cup [z].$$

2.2.1. Centralizer.

Definition 2.11. The *centralizer* $C_G(x)$ of x in G is the subgroup consisting of all elements of G that commute with x.

Thus, $C_G(x) = \{g \in G \mid gx = xg\} = \{g \in G \mid gxg^{-1} = x\}.$

Note 2.4.

(1) $\langle x \rangle < C_G(x)$.

(2) If *G* is abelian, then $C_G(x) = G$.

Proposition 2.12. *If* $x \in G$ *a finite group then* $|[x]| = (G : C_G(x))$ *.*

2.2.2. Centre.

Definition 2.13. The *centre* Z(G) of a group G is the subgroup of G consisting of all elements $x \in G$ that commute with *every* elements of G.

Thus, $Z(G) = \{x \in G \mid xg = gx \text{ for all } g \in G\}.$

Note:

(1) *Z*(*G*) *⊲ G*.
(2) *Z*(*G*) = *G* if and only if *G* is abelian.
(3) *x ∈ Z*(*G*) if and only if [*x*] = {*x*}, or equivalently |[*x*]| = 1.

2.2.3. Simple groups.

Definition 2.14. A group *G* is called *simple* if *G* has no proper non-trivial normal subgroups.

Week 3 — Lecture 7 — Wednesday 18th March.

Theorem 2.15. An abelian simple group G with |G| > 1 must be isomorphic to C_p for some prime p.

Definition 2.16. A group of order p^n , where p is prime, is called a *p*-group.

Lemma 2.17. Let *P* be a *p*-group of order p^n , $n \ge 1$. Then $Z(P) \ne \langle e \rangle$. Thus *P* is not simple unless n = 1, that is $P \simeq C_p$.

2.2.4. *Conjugates of a subgroup, and the normalizer.* If H < G, the conjugates of H are the subgroups gHg^{-1} , for $g \in G$.

Definition 2.18. The *normalizer* of a subgroup *H* of *G* is the subgroup

$$N_G(H) = \{g \in G \mid gHg^{-1} = H\}.$$

Note 2.5. $N_G(H)$ is the largest subgroup of G in which H is normal. That is if $H \triangleleft N_G(H)$, and if $H \triangleleft K < G$ then $K < N_G(H)$.

Proposition 2.19. *If H is a subgroup of a finite group G then the number of distinct conjugates of H in G equals* $(G: N_G(H))$.

Week 3 — Lecture 8 — Friday 20th March.

3. Homomorphisms and Factor Groups

3.1. Homomorphisms.

Definition 3.1. If *G* and *H* are groups, a *homomorphism* from *G* to *H* is a function $f : G \to H$ such that

$$f(xy) = f(x)f(y)$$

for all $x, y \in G$.

Proposition 3.2. If $f : G \to H$ is a homomorphism, then

(1) f(e) = e.

(2) $f(g^{-1}) = (f(g))^{-1}$.

(3) The image of f,

$$im(f) = f(G) = \{f(g) \mid g \in G\}$$

is a subgroup of H.

(4) The kernel of f,

$$\ker f = \{g \in G \mid f(g) = e\},\$$

is a normal subgroup of G.

(5) A homomorphism f is one to one if and only if ker $f = \langle e \rangle$. So f is an isomorphism if and only if ker $f = \{e\}$ and im(f) = H.

3.2. The factor group. Let $N \triangleleft G$. Consider the set

$$G/N = \{gN \mid g \in G\}$$

of left cosets of N in G. This set is a group under the operation

$$gNhN = (gh)N.$$

This group is called the *factor or quotient group* of *G* by *N*. Its order is |G|/|N| = (G:N).

Theorem 3.3. (Homomorphism Theorem) Let $f : G \to H$ be a homomorphism. Then the groups $G/\ker f$ and f(G) are isomorphic.

Theorem 3.4. Let $N \triangleleft G$. Then the function $f : G \rightarrow G/N$ given by f(g) = gN is a homomorphism with kernel N.