School of Mathematical Sciences PURE MTH 3007 Groups and Rings III, Semester 1, 2009

Week 1 Summary

```
Week 1 — Lecture 1 — Tuesday 3 March.
```

1. INTRODUCTION (BACKGROUND FROM ALGEBRA II)

1.1. Groups and Subgroups.

Definition 1.1. A *binary operation* on a set G is a function $G \times G \rightarrow G$ often written just as juxtoposition, i.e. $(x, y) \mapsto x y.$

Definition 1.2. A *group* is a set G with a binary operation $G \times G \to G$, $(x, y) \mapsto xy$, a function $G \to G$, $x \mapsto x^{-1}$ called the *inverse* and an element $e \in G$ called the *identity* satisfying:

(a) $(xy)z = x(yz) \quad \forall x, y, z \in G$

(b) $ex = x = xe \quad \forall x \in G$, and (c) $xx^{-1} = e = x^{-1}x \quad \forall x \in G.$

Definition 1.3. Let *G* be a group.

(a) For $x, y \in G$ we say that x and y *commute* if xy = yx.

(b) If every *x*, *y* in *G* commute we call *G* an *abelian* group.

Proposition 1.4. (Basic properties of groups).

(a) The identity is unique. That is if $f \in G$ and fx = x = xf for all $x \in G$ then f = e.

(b) If $x \in G$ then x^{-1} is unique. That is if xy = e = yx then $y = x^{-1}$.

(c) Any bracketing of a multiple product $x_1 x_2 \cdots x_n$ gives the same outcome so no bracketing is necessary.

(d) Cancellation laws hold. That is if ax = ay then x = y and if xa = ya then x = y.

Definition 1.5. If $H \subset G$ we say that *H* is a *subgroup* of *G* if:

(a) $\forall x, y \in H$ we have $xy \in H$,

(b) $\forall x \in H$ we have $x^{-1} \in H$ and

(c)
$$e \in H$$
.

Note 1.1. If *H* is a subgroup of *G* we write H < G. If H < G and $H \neq G$ we say that *H* is a proper subgroup of G.

Proposition 1.6. (*Properties of subgroups*)

(a) If $H \subset G$ then H is a subgroup if and only if for all $x, y \in H$ we have $x y^{-1} \in H$.

(b) $\langle e \rangle < G$ and G < G.

(c) If H and K are subgroups of G then $H \cap K$ is a subgroup of G.

Note 1.2*.* Sometimes it is useful to draw the *subgroup lattice* of a group *G*. This is a directed graph whose nodes are the subgroups of G with H and H' joined by a directed edge if H < H'. We usually draw this vertically with *G* at the top and $\langle e \rangle$ at the bottom.

Definition 1.7. If *G* is a group and has a finite number of elements we call it a *finite group*. The number of elements is called the *order* of G and denoted |G|. If G is not a finite group we call it an *infinite group* and say it has infinite order.

If $G = \{x_1, \ldots, x_n\}$ is a finite group the *multiplication table* of G is formed from all the products:

	x_1	x_2	• • •	x_n
x_1	x_1x_1	$x_1 x_2$	• • •	x_1x_n
\boldsymbol{x}_2	$x_2 x_1$	$x_2 x_2$	• • •	$x_2 x_n$
÷	÷	÷	·	÷
x_n	$x_n x_1$	$x_n x_2$		$x_n x_n$

Note 1.3. If $x \in G$ then we write $x^0 = e$, $x^k = xx \cdots x$ where there are k x's in the product and $x^{-k} = (x^{-1})^k$.

Definition 1.8. If *G* is a group and $x \in G$ we say that *x* has *order n* if *n* is the smallest non-negative integer for which $x^n = e$. We denote the order of *x* by |x|. If $x^n \neq e$ for all *n* we say that *x* has *infinite* order.

Definition 1.9. If *G* is a group and $X \subset G$ we define $\langle X \rangle$ to be the smallest subgroup of *G* containing *X* and called it the *subgroup generated* by *X*.

Note 1.4. If $X \subset G$ then $\langle X \rangle$ consists of all arbitrary products of elements of X with arbitrary integer powers.

Definition 1.10. If *G* is a group with $X \subset G$ and $\langle X \rangle = G$ we say that *X* generates *G*. If *X* is finite we say that *G* is *finitely generated*.

Definition 1.11. If *G* is a group which is generated by one element $x \in G$ we call *G cyclic*.

Note 1.5. Cyclic groups are abelian.

Theorem 1.12. Any subgroup of a cyclic group is cyclic.

Note 1.6. If $G \simeq \langle x \rangle$ has finite order *n* then the subgroups of *G* are exactly the subsets $\langle x^d \rangle$ where d|n. If $G = \langle x \rangle$ is infinite then each $\langle x^d \rangle$ is a subroup for d = 1, 2, ...

Week 1 — Lecture 2 — Wednesday 4th March.

1.2. Examples of Groups.

- (1) The integers \mathbb{Z} , the rationals \mathbb{Q} , the real numbers \mathbb{R} , and the complex numbers \mathbb{C} are all abelian groups under addition.
- (2) The sets of $n \times n$ matrices, $M_n(\mathbb{Z})$, $M_n(\mathbb{Q})$, $M_n(\mathbb{R})$ and $M_n(\mathbb{C})$ are abelian groups under matrix addition.
- (3) $\mathbb{Z}^{\times} = \mathbb{Z} \{0\}$ is not a group under multiplication but \mathbb{Q}^{\times} , \mathbb{R}^{\times} and \mathbb{C}^{\times} are.
- (4) $GL(n, \mathbb{R})$ the set of all invertible matrices in $M_n(\mathbb{R})$ is a group as is $GL(n, \mathbb{C})$.

Example 1.1. (The quaternion group.) Let $\mathbb{H} = \{\pm 1, \pm i, \pm j, \pm k\}$ and define the multiplication by letting the identity be 1 and assuming that -1 commutes with everything else and that also

 $ij = -ji = k, jk = -kj = i, ki = -ik = j, i^2 = j^2 = k^2 = -1$ and ijk = -1.

This group \mathbb{H} is called the quaternion group. It is not abelian and has order 8.

Example 1.2. (Integers modulo *n*.) Define $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ and define a binary operation on it by using addition modulo *n*. That is we add *x* and *y* to get x + y and then calculate the remainder modulo *n*. This makes \mathbb{Z}_n into an abelian group which is cyclic and generated by 1.

Proposition 1.13. The set $\mathbb{Z}_p^{\times} = \mathbb{Z}_p - \{0\}$ is a group under multiplication if and only if p is prime.

Definition 1.14. A *field* is a set \mathbb{F} with two binary operations +, \cdot such that

- (a) $(\mathbb{F}, +)$ is an abelian group
- (b) $(\mathbb{F}^{\times}, \cdot)$ is an abelian group, where $\mathbb{F}^{\times} = \mathbb{F} \setminus \{0\}$
- (c) a(b+c) = ab + ac for all $a, b, c \in \mathbb{F}$.

Some examples of fields are \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p where *p* is prime. The latter example is also denoted *GF*(*p*).

1.2.1. *Matrix groups.* The set $GL(n, \mathbb{F})$ of all invertible $n \times n$ matrices over a field \mathbb{F} is a group under matrix multiplication.

Some subgroups of $GL(n, \mathbb{F})$ are $SL(n, \mathbb{F})$, scalar matrices and diagonal matrices. We denote $GL(n, \mathbb{Z}_p)$ also by GF(n, p).

1.2.2. Permutation groups.

Definition 1.15. A *permutation* on *n* letters is a 1 - 1, onto function from $\{1, 2, ..., n\}$ to $\{1, 2, ..., n\}$.

For a given n, the set of all these forms a group S_n under composition of functions called the *symmetric group* on n letters.

Recall

- (1) I will use composition of functions so if $\alpha, \beta \in S_n$ then $\alpha\beta$ is defined by $\alpha\beta(k) = \alpha(\beta(k))$.
- (2) $|S_n| = n!$
- (3) Each element of S_n can be written as a product of disjoint *cycles*. This decomposition is unique up to the order of writing the cycles.
- (4) The group S_n is not abelian if $n \ge 3$.
- (5) A *transposition* is a cycle of length 2. Every permutation can be written as a product of transpositions.
- (6) A permutation is called *even* or *odd* according to whether it is the product of an even or odd number of transpositions. The set of all *even* permutations in S_n is a group, the *alternating group* A_n on n letters, and $|A_n| = \frac{n!}{2}$.
- (7) A cycle of even length is an odd permutation and a cycle of odd length is an even permutation.

Definition 1.16. A *permutation group of degree* n is a subgroup of S_n .

1.2.3. *Symmetry groups.* The symmetries of the square form a group of order 8, the *dihedral* group D_4 . Similarly, the symmetries of the regular *n*-gon form a group of order 2*n*, the *n*th dihedral group D_n . Clearly $D_n < S_n$, so D_4 is another example of a permutation group of degree 4.

1.3. Isomorphism.

Definition 1.17. Two groups *G* and *H* are called *isomorphic* if there is a 1 - 1, onto function $\phi: G \to H$ such that for all $x, y \in G$ we have $\phi(xy) = \phi(x)\phi(y)$.

Note 1.7. We call such a ϕ an isomorphism. If *G* and *H* are isomorphic, we write $G \simeq H$.

Proposition 1.18. Assume that ϕ : $G \rightarrow H$ is an isomorphism and that $x \in G$. Denote the identities of G and H by e_G and e_H . Then

(a) $\phi(e_G) = e_H$. (b) $\phi(x^{-1}) = (\phi(x))^{-1}$

- $(U) \ \psi(X) = (\psi(X))$
- (c) |G| = |H|
- (d) Either x and $\phi(x)$ are both of infinite order or they have equal finite order.
- (e) If G is abelian so is H.