School of Mathematical Sciences PURE MTH 3007

Groups and Rings III, Semester 1, 2009

Week 1 Summary

Week 1 - Lecture 1 - Tuesday 3 March.

1. Introduction (BACKGround from Algebra II)

1.1. Groups and Subgroups.

Definition 1.1. A binary operation on a set G is a function $G \times G \rightarrow G$ often written just as juxtoposition, i.e $(x, y) \mapsto x y$.
Definition 1.2. A group is a set G with a binary operation $G \times G \rightarrow G,(x, y) \mapsto x y$, a function $G \rightarrow G, x \mapsto x^{-1}$ called the inverse and an element $e \in G$ called the identity satisfying:
(a) $(x y) z=x(y z) \quad \forall x, y, z, \in G$
(b) $e x=x=x e \quad \forall x \in G$, and
(c) $x x^{-1}=e=x^{-1} x \quad \forall x \in G$.

Definition 1.3. Let G be a group.
(a) For $x, y \in G$ we say that x and y commute if $x y=y x$.
(b) If every x, y in G commute we call G an abelian group.

Proposition 1.4. (Basic properties of groups).
(a) The identity is unique. That is if $f \in G$ and $f x=x=x f$ for all $x \in G$ then $f=e$.
(b) If $x \in G$ then x^{-1} is unique. That is if $x y=e=y x$ then $y=x^{-1}$.
(c) Any bracketing of a multiple product $x_{1} x_{2} \cdots x_{n}$ gives the same outcome so no bracketing is necessary.
(d) Cancellation laws hold. That is if $a x=a y$ then $x=y$ and if $x a=y a$ then $x=y$.

Definition 1.5. If $H \subset G$ we say that H is a subgroup of G if:
(a) $\forall x, y \in H$ we have $x y \in H$,
(b) $\forall x \in H$ we have $x^{-1} \in H$ and
(c) $e \in H$.

Note 1.1. If H is a subgroup of G we write $H<G$. If $H<G$ and $H \neq G$ we say that H is a proper subgroup of G.
Proposition 1.6. (Properties of subgroups)
(a) If $H \subset G$ then H is a subgroup if and only if for all $x, y \in H$ we have $x y^{-1} \in H$.
(b) $\langle e\rangle<G$ and $G<G$.
(c) If H and K are subgroups of G then $H \cap K$ is a subgroup of G.

Note 1.2. Sometimes it is useful to draw the subgroup lattice of a group G. This is a directed graph whose nodes are the subgroups of G with H and H^{\prime} joined by a directed edge if $H<H^{\prime}$. We usually draw this vertically with G at the top and $\langle e\rangle$ at the bottom.
Definition 1.7. If G is a group and has a finite number of elements we call it a finite group. The number of elements is called the order of G and denoted $|G|$. If G is not a finite group we call it an infinite group and say it has infinite order.

If $G=\left\{x_{1}, \ldots, x_{n}\right\}$ is a finite group the multiplication table of G is formed from all the products:

	x_{1}	x_{2}	\cdots	x_{n}
x_{1}	$x_{1} x_{1}$	$x_{1} x_{2}$	\cdots	$x_{1} x_{n}$
x_{2}	$x_{2} x_{1}$	$x_{2} x_{2}$	\cdots	$x_{2} x_{n}$
\vdots	\vdots	\vdots	\ddots	\vdots
x_{n}	$x_{n} x_{1}$	$x_{n} x_{2}$	\cdots	$x_{n} x_{n}$

Note 1.3. If $x \in G$ then we write $x^{0}=e, x^{k}=x x \cdots x$ where there are $k x$'s in the product and $x^{-k}=\left(x^{-1}\right)^{k}$.
Definition 1.8. If G is a group and $x \in G$ we say that x has order n if n is the smallest non-negative integer for which $x^{n}=e$. We denote the order of x by $|x|$. If $x^{n} \neq e$ for all n we say that x has infinite order.

Definition 1.9. If G is a group and $X \subset G$ we define $\langle X\rangle$ to be the smallest subgroup of G containing X and called it the subgroup generated by X.
Note 1.4. If $X \subset G$ then $\langle X\rangle$ consists of all arbitrary products of elements of X with arbitrary integer powers.
Definition 1.10. If G is a group with $X \subset G$ and $\langle X\rangle=G$ we say that X generates G. If X is finite we say that G is finitely generated.
Definition 1.11. If G is a group which is generated by one element $x \in G$ we call G cyclic.
Note 1.5. Cyclic groups are abelian.
Theorem 1.12. Any subgroup of a cyclic group is cyclic.
Note 1.6. If $G \simeq\langle x\rangle$ has finite order n then the subgroups of G are exactly the subsets $\left\langle x^{d}\right\rangle$ where $d \mid n$. If $G=\langle x\rangle$ is infinite then each $\left\langle x^{d}\right\rangle$ is a subroup for $d=1,2, \ldots$

Week 1 - Lecture 2 - Wednesday 4th March.

1.2. Examples of Groups.

(1) The integers \mathbb{Z}, the rationals \mathbb{Q}, the real numbers \mathbb{R}, and the complex numbers \mathbb{C} are all abelian groups under addition.
(2) The sets of $n \times n$ matrices, $M_{n}(\mathbb{Z}), M_{n}(\mathbb{Q}), M_{n}(\mathbb{R})$ and $M_{n}(\mathbb{C})$ are abelian groups under matrix addition.
(3) $\mathbb{Z}^{\times}=\mathbb{Z}-\{0\}$ is not a group under multiplication but $\mathbb{Q}^{\times}, \mathbb{R}^{\times}$and \mathbb{C}^{\times}are.
(4) $G L(n, \mathbb{R})$ the set of all invertible matrices in $M_{n}(\mathbb{R})$ is a group as is $G L(n, \mathbb{C})$.

Example 1.1. (The quaternion group.) Let $\mathbb{H}=\{ \pm 1, \pm i, \pm j, \pm k\}$ and define the multiplication by letting the identity be 1 and assuming that -1 commutes with everything else and that also

$$
i j=-j i=k, j k=-k j=i, k i=-i k=j, i^{2}=j^{2}=k^{2}=-1 \quad \text { and } \quad i j k=-1
$$

This group \mathbb{H} is called the quaternion group. It is not abelian and has order 8 .
Example 1.2. (Integers modulo n.) Define $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ and define a binary operation on it by using addition modulo n. That is we add x and y to get $x+y$ and then calculate the remainder modulo n. This makes \mathbb{Z}_{n} into an abelian group which is cyclic and generated by 1.

Proposition 1.13. The set $\mathbb{Z}_{p}^{\times}=\mathbb{Z}_{p}-\{0\}$ is a group under multiplication if and only if p is prime.
Definition 1.14. A field is a set \mathbb{F} with two binary operations + , such that
(a) $(\mathbb{F},+)$ is an abelian group
(b) $\left(\mathbb{F}^{\times}, \cdot\right)$ is an abelian group, where $\mathbb{F}^{\times}=\mathbb{F} \backslash\{0\}$
(c) $a(b+c)=a b+a c$ for all $a, b, c \in \mathbb{F}$.

Some examples of fields are $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$ where p is prime. The latter example is also denoted $G F(p)$.
1.2.1. Matrix groups. The set $G L(n, \mathbb{F})$ of all invertible $n \times n$ matrices over a field \mathbb{F} is a group under matrix multiplication.

Some subgroups of $G L(n, \mathbb{F})$ are $S L(n, \mathbb{F})$, scalar matrices and diagonal matrices. We denote $G L\left(n, \mathbb{Z}_{p}\right)$ also by $G F(n, p)$.

Week 1 - Lecture 3 - Friday 6th March.

1.2.2. Permutation groups.

Definition 1.15. A permutation on n letters is a $1-1$, onto function from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}$.
For a given n, the set of all these forms a group S_{n} under composition of functions called the symmetric group on n letters.

Recall

(1) I will use composition of functions so if $\alpha, \beta \in S_{n}$ then $\alpha \beta$ is defined by $\alpha \beta(k)=\alpha(\beta(k))$.
(2) $\left|S_{n}\right|=n$!
(3) Each element of S_{n} can be written as a product of disjoint cycles. This decomposition is unique up to the order of writing the cycles.
(4) The group S_{n} is not abelian if $n \geq 3$.
(5) A transposition is a cycle of length 2. Every permutation can be written as a product of transpositions.
(6) A permutation is called even or odd according to whether it is the product of an even or odd number of transpositions. The set of all even permutations in S_{n} is a group, the alternating group A_{n} on n letters, and $\left|A_{n}\right|=\frac{n!}{2}$.
(7) A cycle of even length is an odd permutation and a cycle of odd length is an even permutation.

Definition 1.16. A permutation group of degree n is a subgroup of S_{n}.
1.2.3. Symmetry groups. The symmetries of the square form a group of order 8 , the dihedral group D_{4}. Similarly, the symmetries of the regular n-gon form a group of order $2 n$, the nth dihedral group D_{n}. Clearly $D_{n}<S_{n}$, so D_{4} is another example of a permutation group of degree 4 .

1.3. Isomorphism.

Definition 1.17. Two groups G and H are called isomorphic if there is a $1-1$, onto function $\phi: G \rightarrow H$ such that for all $x, y \in G$ we have $\phi(x y)=\phi(x) \phi(y)$.
Note 1.7. We call such a ϕ an isomorphism. If G and H are isomorphic, we write $G \simeq H$.
Proposition 1.18. Assume that $\phi: G \rightarrow H$ is an isomorphism and that $x \in G$. Denote the identities of G and H by e_{G} and e_{H}. Then
(a) $\phi\left(e_{G}\right)=e_{H}$.
(b) $\phi\left(x^{-1}\right)=(\phi(x))^{-1}$
(c) $|G|=|H|$
(d) Either x and $\phi(x)$ are both of infinite order or they have equal finite order.
(e) If G is abelian so is H.

