School of Mathematical Sciences PURE MTH 3007 Groups and Rings III, Semester 1, 2009

Week 12 Summary

Week 12 — Lecture 25 — Tuesday 2nd June.

Lemma 13.10. Let *D* be a PID and let $a_1, a_2, a_3, ...$ be a sequence of elements of *D* such that for each *i*, $a_{i+1}|a_i$. Then for some *N*, a_n is an associate of a_N for all n > N.

13.4. Polynomial rings as UFDs.

Theorem 13.11. If D is a UFD then so is D[x].

Corollary 13.12. If D is a UFD so also is $D[x_1, \ldots, x_n]$.

Hence, in particular, $\mathbb{Z}[x]$, F[x, y], F[x, y, z] are UFDs.

13.5. Relationships between classes of rings.

 $ED \subset PID \subset UFD \subset ID \subset$ commutative rings with 1.

Examples:

EDs	$\mathbb{Z}, F[x], \mathbb{Z}(i), \mathbb{Z}(\sqrt{2})$
PIDs which are not EDs	$\left\{\frac{m}{2}+\frac{n}{2}\sqrt{-19}\mid m,n\in\mathbb{Z}\right\}$
UFDs which are not PIDs	$\mathbb{Z}[x], \mathbb{Z}[x, y], F[x, y]$
IDs which are not UFDs	$\mathbb{Z}(\sqrt{-5}), \mathbb{Z}(\sqrt{10})$
Commutative rings with 1 which are not IDs	\mathbb{Z}_m , <i>m</i> composite.