Week 11 Summary

Week 11 – Lecture 25 – Tuesday 26th May.

12.2.1. *The integral domains* $\mathbb{Z}(\sqrt{d})$. **The Gaussian integers** This is the integral domain

$$\mathbb{Z}(i) = \{m + ni \mid m, n \in \mathbb{Z}\}$$

with $\delta(m + ni) = m^2 + n^2$ and i = -1 as usual. Then δ is a Euclidean valuation.

The general case If $d \in \mathbb{Z}$ we define

$$\mathbb{Z}(\sqrt{d}) = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}.$$

This is an integral domain, a subdomain of \mathbb{C} . We normally take $d \neq 0, 1$ and d squarefree.

The *norm* in $\mathbb{Z}(\sqrt{d})$ is the function $N : \mathbb{Z}(\sqrt{d}) \to \mathbb{N}$ given by

$$N(a+b\sqrt{d}) = |a^2 - db^2|.$$

Theorem 12.3. *In* $\mathbb{Z}(\sqrt{d})$,

- (i) N(x) = 0 if and only if x = 0
- (ii) for all $x, y \in \mathbb{Z}(\sqrt{d})$, N(xy) = N(x)N(y)
- (iii) *x* is a unit if and only if N(x) = 1
- (iv) if N(x) is prime, then x is irreducible in $\mathbb{Z}(\sqrt{d})$.

Note that *N* is in some cases, but not in all cases, a Euclidean valuation, so for some *d*, $\mathbb{Z}(\sqrt{d})$ is a Euclidean domain.

Week 11 — Lecture 26 — Wednesday 27th May.

12.3. Principal ideal domains.

Definition 12.4. An integral domain *D* is a *principal ideal domain (PID)* if every ideal of *D* is principal.

Theorem 12.5. Every Euclidean domain is a PID.

Examples:

- (1) \mathbb{Z} is an ED and hence a PID.
- (2) If *F* is a field, F[x] is an ED, and hence a PID.
- (3) The Gaussian integers $\mathbb{Z}(i)$ is a PID.
- (4) The domain $\mathbb{Z}[x]$ is *not* a PID. (Consider the ideal $\langle 2, x \rangle = 2\mathbb{Z}[x] + x\mathbb{Z}[x]$.)

Week 11 — Lecture 27 — Friday 29th May.

13. UNIQUE FACTORIZATION DOMAINS

13.1. Definitions.

Definition 13.1. An integral domain *D* is called a *unique factorization domain (UFD)* if for every $a \in D$, not zero or a unit,

(i) $a = c_1 c_2 \dots c_n$ for irreducibles c_i

(ii) if $a = c_1 c_2 \dots c_n = d_1 d_2 \dots d_m$ with c_i, d_j all irreducible then n = m and the d_i can be renumbered such that each c_i is an associate of d_i .

13.2. Irreducibility tests for polynomials.

Lemma 13.2. Let *F* be a field. If $f(x) \in F[x]$ has degree 2 or 3 then f(x) is reducible over *F* if and only if f(x) has a zero in *F*.

Theorem 13.3 (Eisenstein's criterion). Let $f(x) = a_0 + a_1x + ... + a_nx^n \in \mathbb{Z}[x]$. Suppose that there is a prime p such that

(i) $p | a_n$ (ii) $p | a_i$ for i = 0, 1, ..., n - 1(iii) $p^2 | a_0$.

Then apart from a constant factor f(x) is irreducible over \mathbb{Z} .

13.3. Irreducibles and primes.

Definition 13.4. Let *a*, *b* elements of an integral domain *D*. If $a \neq 0$ we say that *a divides b* $(a \mid b)$ if b = ac for some $c \in D$.

Definition 13.5. An element *p* of an integral domain *D*, not zero or a unit, is called *prime* if whenever p|ab for $a, b \in D$, either p|a or p|b.

Lemma 13.6. Every prime in an integral domain is irreducible.

Theorem 13.7. *Let D be an integral domain. Then D is a UFD if and only if*

(i) for every $a \in D$, not zero or a unit, $a = c_1 c_2 \dots c_n$ for irreducibles c_i (ii) every irreducible in D is prime.

Theorem 13.8. Every PID is a UFD.