School of Mathematical Sciences
 PURE MTH 3007

Groups and Rings III, Semester 1, 2009

Week 11 Summary

Week 11 - Lecture 25 - Tuesday 26th May.

12.2.1. The integral domains $\mathbb{Z}(\sqrt{d})$. The Gaussian integers This is the integral domain

$$
\mathbb{Z}(i)=\{m+n i \mid m, n \in \mathbb{Z}\}
$$

with $\delta(m+n i)=m^{2}+n^{2}$ and $i=-1$ as usual. Then δ is a Euclidean valuation.
The general case If $d \in \mathbb{Z}$ we define

$$
\mathbb{Z}(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in \mathbb{Z}\} .
$$

This is an integral domain, a subdomain of \mathbb{C}. We normally take $d \neq 0,1$ and d squarefree.
The norm in $\mathbb{Z}(\sqrt{d})$ is the function $N: \mathbb{Z}(\sqrt{d}) \rightarrow \mathbb{N}$ given by

$$
N(a+b \sqrt{d})=\left|a^{2}-d b^{2}\right| .
$$

Theorem 12.3. In $\mathbb{Z}(\sqrt{d})$,
(i) $N(x)=0$ if and only if $x=0$
(ii) for all $x, y \in \mathbb{Z}(\sqrt{d}), N(x y)=N(x) N(y)$
(iii) x is a unit if and only if $N(x)=1$
(iv) if $N(x)$ is prime, then x is irreducible in $\mathbb{Z}(\sqrt{d})$.

Note that N is in some cases, but not in all cases, a Euclidean valuation, so for some $d, \mathbb{Z}(\sqrt{d})$ is a Euclidean domain.

Week 11 - Lecture 26 - Wednesday 27th May.

12.3. Principal ideal domains.

Definition 12.4. An integral domain D is a principal ideal domain (PID) if every ideal of D is principal.
Theorem 12.5. Every Euclidean domain is a PID.

Examples:

(1) \mathbb{Z} is an ED and hence a PID.
(2) If F is a field, $F[x]$ is an ED, and hence a PID.
(3) The Gaussian integers $\mathbb{Z}(i)$ is a PID.
(4) The domain $\mathbb{Z}[x]$ is not a PID. (Consider the ideal $\langle 2, x\rangle=2 \mathbb{Z}[x]+x \mathbb{Z}[x]$.)

13. Unique Factorization Domains

13.1. Definitions.

Definition 13.1. An integral domain D is called a unique factorization domain (UFD) if for every $a \in D$, not zero or a unit,
(i) $a=c_{1} c_{2} \ldots c_{n}$ for irreducibles c_{i}
(ii) if $a=c_{1} c_{2} \ldots c_{n}=d_{1} d_{2} \ldots d_{m}$ with c_{i}, d_{j} all irreducible then $n=m$ and the d_{i} can be renumbered such that each c_{i} is an associate of d_{i}.

13.2. Irreducibility tests for polynomials.

Lemma 13.2. Let F be a field. If $f(x) \in F[x]$ has degree 2 or 3 then $f(x)$ is reducible over F if and only if $f(x)$ has a zero in F.
Theorem 13.3 (Eisenstein's criterion). Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in \mathbb{Z}[x]$.
Suppose that there is a prime p such that
(i) $p \nmid a_{n}$
(ii) $p \mid a_{i}$ for $i=0,1, \ldots, n-1$
(iii) $p^{2} \wedge a_{0}$.

Then apart from a constant factor $f(x)$ is irreducible over \mathbb{Z}.

13.3. Irreducibles and primes.

Definition 13.4. Let a, b elements of an integral domain D. If $a \neq 0$ we say that a divides $b(a \mid b)$ if $b=a c$ for some $c \in D$.

Definition 13.5. An element p of an integral domain D, not zero or a unit, is called prime if whenever $p \mid a b$ for $a, b \in D$, either $p \mid a$ or $p \mid b$.
Lemma 13.6. Every prime in an integral domain is irreducible.
Theorem 13.7. Let D be an integral domain. Then D is a UFD if and only if
(i) for every $a \in D$, not zero or a unit, $a=c_{1} c_{2} \ldots c_{n}$ for irreducibles c_{i}
(ii) every irreducible in D is prime.

Theorem 13.8. Every PID is a UFD.

