School of Mathematical Sciences
 PURE MTH 3007

Groups and Rings III, Semester 1, 2009

Week 10 Summary

We are about a lecture ahead of where I was planning to be so I will start recalibrating the lecture plan.
On Friday of Week 9 we covered:
10.3. Polynomial functions. Let R be a ring and $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ a polynomial over R. Then the function $\bar{f}: R \rightarrow R$ given by $\bar{f}(r)=a_{0}+a_{1} r+a_{2} r^{2}+\cdots$ is called the polynomial function associated to f.

The set $\mathcal{P}(\underline{R})$ of all polynomial functions over R is a ring under the operations $(\bar{f}+\bar{g})(r)=\bar{f}(r)+\bar{g}(r)$ and $(\overline{f g})(r)=\bar{f}(r) \cdot \bar{g}(r)$. It is then easy to show that

$$
\bar{f}+\bar{g}=\overline{f+g}, \quad \bar{f} \bar{g}=\overline{f g} .
$$

If R is a commutative ring with identity then so is $\mathcal{P}(R)$, but note that $\mathcal{P}(R)$ is not necessarily isomorphic to $R[x]$.
10.3.1. Zeros of polynomials. Let F be a field.

Definition 10.3. An element $a \in F$ is a zero of $f(x) \in F[x]$ if $\bar{f}(a)=0$.
Theorem 10.4 (Factor Theorem). The element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if $x-a \mid f(x)$.
Corollary 10.5. A polynomial of degree n over a field F has at most n zeros in F.
Definition 10.6. A non-constant polynomial $f(x) \in F[x]$ is irreducible over F if $f(x) \neq g(x) h(x)$ for any polynomials $g(x), h(x)$ of degree less than $f(x)$.

Week 10 - Lecture 25 - Tuesday 19th May.

11. IDEALS

11.1. Introduction.

Definition 11.1. A subring I of a ring R is called an ideal of R if for all $r \in R$ and $i \in I$ we have ir $\in I$ and $r i \in I$.

11.2. The Factor Ring.

Theorem 11.2 (The Factor Ring). Let I be an ideal of the ring R. Then the set R / I of all cosets of I in R is a ring under the operations

$$
\begin{aligned}
(r+I)+(s+I) & =(r+s)+I \\
(r+I) \cdot(s+I) & =r s+I .
\end{aligned}
$$

If R is a commutative ring, or a ring with identity, then so is R / I.
Lemma 11.3. Let $\phi: R \rightarrow S$ be a ring homomorphism. Then ker ϕ is an ideal of R.
Theorem 11.4 (Homomorphism Theorem). If $\phi: R \rightarrow S$ is a ring homomorphism then

$$
R / \operatorname{ker} \phi \simeq \phi(R) .
$$

Lemma 11.5. If I and J are ideals of R then so are $I+J$ and $I \cap J$.

Theorem 11.6 (Isomorphism Theorem).
(i) Let I be an ideal of R. Then there is a 1-1 correspondence between subrings S of R containing I and subrings S / I of R / I. Here S is an ideal of R if and only if S / I is an ideal of R / I.
(ii) Let $I \subset J \subset R$ with I and J ideals of R. Then

$$
R / J \simeq(R / I) /(J / I)
$$

(iii) Let I and J be ideals of R. Then

$$
(I+J) / J \simeq I /(I \cap J)
$$

Week 10 - Lecture 26 - Friday 22nd May.
11.3. Ideals in commutative rings with identity. Let R be a commutative ring with identity.

Definition 11.7. An ideal of the form $\langle a\rangle=\{a r \mid r \in R\}$ is called a principal ideal of R.
An ideal M of R is called a maximal ideal if there is no ideal I of R such that $M \subset I \subset R$.
Theorem 11.8. Let R be a commutative ring with identity. Then M is a maximal ideal of R if and only if R / M is a field.

12. FACTORIZATION IN INTEGRAL DOMAINS

12.1. Irreducibles and associates.

Definition 12.1. An element c of an integral domain, not zero or a unit, is called irreducible if, whenever $c=d f$, one of d or f is a unit.

Elements c and d are called associates if $c=d u$ for a unit u.

12.2. Euclidean domains.

Definition 12.2. A Euclidean domain is an integral domain D together with a function $\delta: D^{*} \rightarrow \mathbb{N}$ satisfying
(i) $\delta(a) \leq \delta(a b)$ for all non-zero $a, b \in D$
(ii) for all $a, b \in D, b \neq 0$ there exist $q, r \in D$ such that

$$
a=b q+r
$$

with either $r=0$ or $\delta(r)<\delta(b)$.
The function δ is called a Euclidean valuation.

Examples:

(1) \mathbb{Z} with $\delta(n)=|n|$.
(2) $F[x]$ with $\delta(f(x))=\operatorname{deg} f(x)$, where F is a field.

