School of Mathematical Sciences PURE MTH 3007 Groups and Rings III, Semester 1, 2009

Week 10 Summary

We are about a lecture ahead of where I was planning to be so I will start recalibrating the lecture plan.

On Friday of Week 9 we covered:

10.3. **Polynomial functions.** Let *R* be a ring and $f(x) = a_0 + a_1x + a_2x^2 + \cdots$ a polynomial over *R*. Then the function $\overline{f} : R \to R$ given by $\overline{f}(r) = a_0 + a_1r + a_2r^2 + \cdots$ is called the *polynomial function* associated to *f*.

The set $\mathcal{P}(R)$ of all polynomial functions over *R* is a ring under the operations $(\overline{f} + \overline{g})(r) = \overline{f}(r) + \overline{g}(r)$ and $(\overline{fg})(r) = \overline{f}(r) \cdot \overline{g}(r)$. It is then easy to show that

$$\overline{f} + \overline{g} = \overline{f + g}, \quad \overline{f} \ \overline{g} = \overline{fg}.$$

If *R* is a commutative ring with identity then so is $\mathcal{P}(R)$, but note that $\mathcal{P}(R)$ is not necessarily isomorphic to R[x].

10.3.1. *Zeros of polynomials*. Let *F* be a field.

Definition 10.3. An element $a \in F$ is a zero of $f(x) \in F[x]$ if $\overline{f}(a) = 0$.

Theorem 10.4 (Factor Theorem). *The element* $a \in F$ *is a zero of* $f(x) \in F[x]$ *if and only if* $x - a \mid f(x)$.

Corollary 10.5. *A polynomial of degree n over a field F has at most n zeros in F.*

Definition 10.6. A non-constant polynomial $f(x) \in F[x]$ is *irreducible over* F if

 $f(x) \neq g(x)h(x)$ for any polynomials g(x), h(x) of degree less than f(x).

Week 10 — Lecture 25 — Tuesday 19th May.

11. IDEALS

11.1. Introduction.

Definition 11.1. A subring *I* of a ring *R* is called an *ideal* of *R* if for all $r \in R$ and $i \in I$ we have $ir \in I$ and $ri \in I$.

11.2. The Factor Ring.

Theorem 11.2 (The Factor Ring). Let I be an ideal of the ring R. Then the set R/I of all cosets of I in R is a ring under the operations

$$(r + I) + (s + I) = (r + s) + I$$

 $(r + I).(s + I) = rs + I.$

If R is a commutative ring, or a ring with identity, then so is R/I.

Lemma 11.3. Let ϕ : $R \rightarrow S$ be a ring homomorphism. Then ker ϕ is an ideal of R.

Theorem 11.4 (Homomorphism Theorem). If ϕ : $R \rightarrow S$ is a ring homomorphism then

$$R/\ker\phi\simeq\phi(R).$$

Lemma 11.5. *If I* and *J* are ideals of *R* then so are I + J and $I \cap J$.

Theorem 11.6 (Isomorphism Theorem).

(i) Let *I* be an ideal of *R*. Then there is a 1 - 1 correspondence between subrings *S* of *R* containing *I* and subrings *S*/*I* of *R*/*I*. Here *S* is an ideal of *R* if and only if *S*/*I* is an ideal of *R*/*I*. (ii) Let $I \subset J \subset R$ with *I* and *J* ideals of *R*. Then

 $R/J \simeq (R/I)/(J/I).$

(iii) Let I and J be ideals of R. Then

 $(I+J)/J \simeq I/(I \cap J).$

Week 10 — Lecture 26 — Friday 22nd May.

11.3. **Ideals in commutative rings with identity.** Let *R* be a commutative ring with identity.

Definition 11.7. An ideal of the form $\langle a \rangle = \{ar \mid r \in R\}$ is called a *principal* ideal of *R*.

An ideal *M* of *R* is called a *maximal* ideal if there is no ideal *I* of *R* such that $M \subset I \subset R$.

Theorem 11.8. *Let* R *be a commutative ring with identity. Then* M *is a maximal ideal of* R *if and only if* R/M *is a field.*

12. FACTORIZATION IN INTEGRAL DOMAINS

12.1. Irreducibles and associates.

Definition 12.1. An element c of an integral domain, not zero or a unit, is called *irreducible* if, whenever c = df, one of d or f is a unit.

Elements *c* and *d* are called *associates* if c = du for a unit *u*.

12.2. Euclidean domains.

Definition 12.2. A *Euclidean domain* is an integral domain *D* together with a function $\delta : D^* \to \mathbb{N}$ satisfying

- (i) $\delta(a) \leq \delta(ab)$ for all non-zero $a, b \in D$
- (ii) for all $a, b \in D$, $b \neq 0$ there exist $q, r \in D$ such that

a = bq + r

with either r = 0 or $\delta(r) < \delta(b)$.

The function δ is called a *Euclidean valuation*.

Examples:

- (1) \mathbb{Z} with $\delta(n) = |n|$.
- (2) F[x] with $\delta(f(x)) = \deg f(x)$, where *F* is a field.