We are about a lecture ahead of where I was planning to be so I will start recalibrating the lecture plan.

On Friday of Week 9 we covered:

10.3. **Polynomial functions.** Let \(R \) be a ring and \(f(x) = a_0 + a_1x + a_2x^2 + \cdots \) a polynomial over \(R \). Then the function \(\overline{f} : R \to R \) given by \(\overline{f}(r) = a_0 + a_1r + a_2r^2 + \cdots \) is called the **polynomial function** associated to \(f \).

The set \(\mathcal{P}(R) \) of all polynomial functions over \(R \) is a ring under the operations \((\overline{f} + \overline{g})(r) = \overline{f}(r) + \overline{g}(r)\) and \((\overline{f\cdot g})(r) = \overline{f}(r)\cdot \overline{g}(r)\). It is then easy to show that

\[
\overline{f + g} = \overline{f} + \overline{g}, \quad \overline{f \cdot g} = \overline{f} \cdot \overline{g}.
\]

If \(R \) is a commutative ring with identity then so is \(\mathcal{P}(R) \), but note that \(\mathcal{P}(R) \) is not necessarily isomorphic to \(R[x] \).

10.3.1. **Zeros of polynomials.** Let \(F \) be a field.

Definition 10.3. An element \(a \in F \) is a **zero** of \(f(x) \in F[x] \) if \(\overline{f}(a) = 0 \).

Theorem 10.4 (Factor Theorem). The element \(a \in F \) is a zero of \(f(x) \in F[x] \) if and only if \(x - a \mid f(x) \).

Corollary 10.5. A polynomial of degree \(n \) over a field \(F \) has at most \(n \) zeros in \(F \).

Definition 10.6. A non-constant polynomial \(f(x) \in F[x] \) is **irreducible** over \(F \) if \(f(x) \neq g(x)h(x) \) for any polynomials \(g(x), h(x) \) of degree less than \(f(x) \).

11. **IDEALS**

11.1. **Introduction.**

Definition 11.1. A subring \(I \) of a ring \(R \) is called an **ideal** of \(R \) if for all \(r \in R \) and \(i \in I \) we have \(ir \in I \) and \(ri \in I \).

11.2. **The Factor Ring.**

Theorem 11.2 (The Factor Ring). Let \(I \) be an ideal of the ring \(R \). Then the set \(R/I \) of all cosets of \(I \) in \(R \) is a ring under the operations

\[
(r + I) + (s + I) = (r + s) + I \quad \text{and} \quad (r + I) \cdot (s + I) = rs + I.
\]

If \(R \) is a commutative ring, or a ring with identity, then so is \(R/I \).

Lemma 11.3. Let \(\phi : R \to S \) be a ring homomorphism. Then \(\ker \phi \) is an ideal of \(R \).

Theorem 11.4 (Homomorphism Theorem). If \(\phi : R \to S \) is a ring homomorphism then \(R/\ker \phi \cong \phi(R) \).

Lemma 11.5. If \(I \) and \(J \) are ideals of \(R \) then so are \(I + J \) and \(I \cap J \).
Theorem 11.6 (Isomorphism Theorem).

(i) Let I be an ideal of R. Then there is a $1-1$ correspondence between subrings S of R containing I and subrings S/I of R/I. Here S is an ideal of R if and only if S/I is an ideal of R/I.

(ii) Let $I \subset J \subset R$ with I and J ideals of R. Then

$$R/J \simeq (R/I)/(J/I).$$

(iii) Let I and J be ideals of R. Then

$$(I + J)/J \simeq I/(I \cap J).$$

Week 10 — Lecture 26 — Friday 22nd May.

11.3. Ideals in commutative rings with identity. Let R be a commutative ring with identity.

Definition 11.7. An ideal of the form $\langle a \rangle = \{ar \mid r \in R\}$ is called a principal ideal of R.

An ideal M of R is called a maximal ideal if there is no ideal I of R such that $M \subset I \subset R$.

Theorem 11.8. Let R be a commutative ring with identity. Then M is a maximal ideal of R if and only if R/M is a field.

12. Factorization in Integral Domains

12.1. Irreducibles and associates.

Definition 12.1. An element c of an integral domain, not zero or a unit, is called irreducible if, whenever $c = df$, one of d or f is a unit.

Elements c and d are called associates if $c = du$ for a unit u.

12.2. Euclidean domains.

Definition 12.2. A Euclidean domain is an integral domain D together with a function $\delta : D^* \rightarrow \mathbb{N}$ satisfying

(i) $\delta(a) \leq \delta(ab)$ for all non-zero $a, b \in D$

(ii) for all $a, b \in D, b \neq 0$ there exist $q, r \in D$ such that

$$a = bq + r$$

with either $r = 0$ or $\delta(r) < \delta(b)$.

The function δ is called a Euclidean valuation.

Examples:

1. \mathbb{Z} with $\delta(n) = |n|$.
2. $F[x]$ with $\delta(f(x)) = \deg f(x)$, where F is a field.