## Examination in School of Mathematical Sciences

## Semester 1, 2008

## 004094 Groups and Rings III PURE MTH 3007

| Official Reading Time: | 10 mins |
| :--- | ---: |
| Writing Time: | $\frac{180 \mathrm{mins}}{190 \mathrm{mins}}$ |

NUMBER OF QUESTIONS: 7 TOTAL MARKS: 100

## Instructions

- Attempt all questions
- Begin each answer on a new page.
- Examination materials must not be removed from the examination room.


## Materials

- 1 Blue book is provided.
- Calculators are not permitted

1. Give a True (T) or False (F) answer to each of the following statements. In each case give a short reason for your answer.
(a) Every abelian group of order 20 is cyclic.
(b) The two permutations (1234) and (1234)(56), both of order 4 in the symmetric group $S_{6}$, are conjugate.
(c) The dihedral group $D_{4}$ of symmetries of the square with vertices $1,2,3,4$ is a Sylow 2-subgroup of the symmetric group $S_{4}$.
(d) In the cyclic group $G=\langle x\rangle$ of order 14, $x^{6}$ also has order 14.
(e) $C_{4} \times C_{6} \cong C_{24}$.
(f) A finite group can have 45 Sylow 11-subgroups.
(g) In a commutative ring $R$ with identity, if $a \mid b$ then $a \in(b)$.
(h) A polynomial $f(x)$ of degree 3 in $\mathbf{Z}_{5}[x]$ has at most 3 zeros.
(i) In $\mathbf{Z}(i), 2$ is irreducible.

## [24 marks]

2. (a) If $x, y$ and $z$ are elements of order $2,3,4$ respectively in an abelian group $G$ state the order of $x y$ and the order of $x z$.
(b) Give the torsion invariants and the rank of the abelian group $G$ which is defined by:

$$
G=\left\langle a, b, c \mid a^{4} b^{3} c=a^{-8} b^{10} c^{2}=a^{24} b^{-1} c=1\right\rangle
$$

(c) Determine all abelian groups of order $252=2^{2} .3^{2} .7$, giving the prime power decomposition and torsion invariants for each group
[11 marks]
3. (a) Define the conjugacy class of a group $G$.
(b) Let $K$ be a conjugacy class of a group $G$. If $x \in K \cap Z(G)$ show that $K=\{x\}$.
(c) Let $a, g$ be elements of a finite group. Show that $a$ and $g^{-1} a g$ have the same order.
(d) If $\langle x\rangle$ has order 4 and $\langle x\rangle \triangleleft G$, give all possible conjugates of $x$ and of $x^{2}$ in $G$.

Hence show that $Z(G) \neq\langle 1\rangle$.
[12 marks]

DO NOT COMMENCE WRITING UNTIL INSTRUCTED TO DO SO.
4. (a) State the Orbit-Stabilizer Theorem.
(b) Let $H$ be a subgroup of the finite group $G$ with $G=H x_{1} \cup H x_{2} \cup \ldots H x_{n}$; that is, $H \cdot 1=H=H x_{1}, H x_{2}, \ldots, H x_{n}$ are the $n$ cosets of $H$ in $G$. Let $G$ act on the set $X=\left\{H x_{i} \mid i=1, \ldots, n\right\}$ by $\left(H x_{i}\right)^{g}=H x_{i} g$.
(i) Show that $G$ has only one orbit $[H]$ on $X$.
(ii) Let $S_{G}(H)$ denote the stabilizer of $H$ in $G$. Use the Orbit-Stabilizer Theorem to determine $\left|S_{G}(H)\right|$.
(iii) Hence determine $S_{G}(H)$.
[7 marks]
5. (a) State Sylow's Theorems on the existence, conjugacy and number of Sylow subgroups in a finite group $G$.
(b) Let $G$ be a group of order $p^{a} q^{b}$ where $p, q$ are distinct primes and $a, b$ are positive integers. If $G$ has only one Sylow $p$-subgroup $P$ and only one Sylow $q$-subgroup $Q$, explain why $G=P \times Q$.
(c) Let $G$ be a group of order 33. Use Sylow's Theorem and (b) to prove that $G$ is cyclic.

> [14 marks]
6. (a) Suppose $\nu_{1}, \nu_{2}$ denote the usual Euclidean norms for $\mathbf{Q}[x]$ and $\mathbf{Z}(i)$ respectively.
(i) What are the functions $\nu_{1}, \nu_{2}$ ?
(ii) Describe the elements $q \in \mathbf{Q}[x]$ with $\nu_{1}(q)=0$.
(iii) List the elements $z \in \mathbf{Z}(i)$ with $\nu_{2}(z)=1$.
(iv) Are $\mathbf{Q}[x], \mathbf{Z}(i)$ unique factorization domains? Give a reason for your answer.
(b) Factor $p(x)=x^{3}-x^{2}+2 x-2$ in $\mathbf{Z}_{5}[x]$ into irreducible factors. Use your factorisation to explain why $\mathbf{Z}_{5}[x] /(p(x))$ is not an integral domain.
(c) (i) Define an irreducible element and a maximal ideal in a ring.
(ii) Show that if $R$ is a principal ideal domain then $M=(m)$ is a maximal ideal if $m$ is irreducible.
(iii) Using the integral domain $\mathbf{Z}[x]$, give an example of an irreducible element $z$ for which $(z)$ is not maximal.
[18 marks]
7. Consider the integral domain $\mathbf{Z}(\sqrt{-5})=\{a+b \sqrt{-5} \mid a, b \in \mathbf{Z}\}$.

In this question you may use (without proof) the fact that that norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$ is multiplicative in $\mathbf{Z}(\sqrt{-5})$.
(a) Prove that $\alpha \in \mathbf{Z}(\sqrt{-5})$ is a unit if and only if $N(\alpha)=1$.
(b) Find all units of $\mathbf{Z}(\sqrt{-5})$.
(c) Show that if $N(\alpha)=9$, then $\alpha$ is irreducible.
(d) By considering the product $(1+\sqrt{-5})(1-\sqrt{-5})$, show that 3 is not prime in $\mathbf{Z}(\sqrt{-5})$.
(e) Is $\mathbf{Z}(\sqrt{-5})$ a unique factorization domain? Justify your answer.

