

Examination in School of Mathematical Sciences

Semester 1, 2008

004094	Groups and Rings III	
	PURE MTH 3007	

Official Reading Time:10 minsWriting Time:180 minsTotal Duration:190 mins

NUMBER OF QUESTIONS: 7 TOTAL MARKS: 100

Instructions

- Attempt all questions.
- Begin each answer on a new page.
- Examination materials must not be removed from the examination room.

Materials

- 1 Blue book is provided.
- Calculators are not permitted.

- Groups and Rings III
- 1. Give a True (T) or False (F) answer to each of the following statements. In each case give a *short* reason for your answer.
 - (a) Every abelian group of order 20 is cyclic.
 - (b) The two permutations (1234) and (1234)(56), both of order 4 in the symmetric group S_6 , are conjugate.
 - (c) The dihedral group D_4 of symmetries of the square with vertices 1, 2, 3, 4 is a Sylow 2-subgroup of the symmetric group S_4 .
 - (d) In the cyclic group $G = \langle x \rangle$ of order 14, x^6 also has order 14.
 - (e) $C_4 \times C_6 \cong C_{24}$.
 - (f) A finite group can have 45 Sylow 11-subgroups.
 - (g) In a commutative ring R with identity, if a|b then $a \in (b)$.
 - (h) A polynomial f(x) of degree 3 in $\mathbb{Z}_5[x]$ has at most 3 zeros.
 - (i) In $\mathbf{Z}(i)$, 2 is irreducible.

[24 marks]

- 2. (a) If x, y and z are elements of order 2, 3, 4 respectively in an abelian group G state the order of xy and the order of xz.
 - (b) Give the torsion invariants and the rank of the abelian group G which is defined by:

$$G = \langle a, b, c \mid a^4 b^3 c = a^{-8} b^{10} c^2 = a^{24} b^{-1} c = 1 \rangle .$$

(c) Determine all abelian groups of order $252 = 2^2 \cdot 3^2 \cdot 7$, giving the prime power decomposition and torsion invariants for each group.

[11 marks]

- 3. (a) Define the conjugacy class of a group G.
 - (b) Let K be a conjugacy class of a group G. If $x \in K \cap Z(G)$ show that $K = \{x\}$.
 - (c) Let a, g be elements of a finite group. Show that a and $g^{-1}ag$ have the same order.
 - (d) If $\langle x \rangle$ has order 4 and $\langle x \rangle \triangleleft G$, give all possible conjugates of x and of x^2 in G. Hence show that $Z(G) \neq \langle 1 \rangle$.

[12 marks]

DO NOT COMMENCE WRITING UNTIL INSTRUCTED TO DO SO.

Please turn over for page 3

Groups and Rings III

Page 3 of 4

- 4. (a) State the Orbit-Stabilizer Theorem.
 - (b) Let H be a subgroup of the finite group G with G = Hx₁ ∪ Hx₂ ∪ ... Hx_n; that is, H ⋅ 1 = H = Hx₁, Hx₂, ..., Hx_n are the n cosets of H in G. Let G act on the set X = {Hx_i | i = 1,...,n} by (Hx_i)^g = Hx_ig.
 - (i) Show that G has only one orbit [H] on X.
 - (ii) Let $S_G(H)$ denote the stabilizer of H in G. Use the Orbit-Stabilizer Theorem to determine $|S_G(H)|$.
 - (iii) Hence determine $S_G(H)$.

[7 marks]

- 5. (a) State Sylow's Theorems on the existence, conjugacy and number of Sylow subgroups in a finite group G.
 - (b) Let G be a group of order p^aq^b where p, q are distinct primes and a, b are positive integers. If G has only one Sylow p-subgroup P and only one Sylow q-subgroup Q, explain why G = P × Q.
 - (c) Let G be a group of order 33. Use Sylow's Theorem and (b) to prove that G is cyclic. [14 marks]
- 6. (a) Suppose ν₁, ν₂ denote the usual Euclidean norms for Q[x] and Z(i) respectively.
 (i) What are the functions ν₁, ν₂?
 - (ii) Describe the elements $q \in \mathbf{Q}[x]$ with $\nu_1(q) = 0$.
 - (iii) List the elements $z \in \mathbf{Z}(i)$ with $\nu_2(z) = 1$.
 - (iv) Are $\mathbf{Q}[x], \mathbf{Z}(i)$ unique factorization domains? Give a reason for your answer.
 - (b) Factor $p(x) = x^3 x^2 + 2x 2$ in $\mathbb{Z}_5[x]$ into irreducible factors. Use your factorisation to explain why $\mathbb{Z}_5[x]/(p(x))$ is *not* an integral domain.
 - (c) (i) Define an *irreducible* element and a maximal ideal in a ring.
 - (ii) Show that if R is a principal ideal domain then M = (m) is a maximal ideal if m is irreducible.
 - (iii) Using the integral domain $\mathbf{Z}[x]$, give an example of an irreducible element z for which (z) is not maximal.

[18 marks]

Groups and Rings III

- 7. Consider the integral domain $\mathbf{Z}(\sqrt{-5}) = \{a + b\sqrt{-5} \mid a, b \in \mathbf{Z}\}$. In this question you may use (without proof) the fact that that norm
 - In this question you may use (without proof) the fact that that nor $N(a + b\sqrt{-5}) = a^2 + 5b^2$ is multiplicative in $\mathbf{Z}(\sqrt{-5})$.
 - (a) Prove that $\alpha \in \mathbf{Z}(\sqrt{-5})$ is a unit if and only if $N(\alpha) = 1$.
 - (b) Find all units of $\mathbf{Z}(\sqrt{-5})$.
 - (c) Show that if $N(\alpha) = 9$, then α is irreducible.
 - (d) By considering the product $(1 + \sqrt{-5})(1 \sqrt{-5})$, show that 3 is not prime in $\mathbb{Z}(\sqrt{-5})$.
 - (e) Is $\mathbf{Z}(\sqrt{-5})$ a unique factorization domain? Justify your answer.

[14 marks]