Groups and Rings III 2009

Assignment 6

- Please hand up solutions to the starred questions by the 3.00 pm lecture on Friday 5th June.
- Please try the unstarred questions by the tutorial on Wednesday 3rd June at 9.00 at which they will be discussed.
1^{*}. Let D be an integral domain. Show that
(a) $a \mid b$ if and only if $\langle a\rangle \supseteq\langle b\rangle$
(b) $\langle a\rangle=D$ if and only if a is a unit
(c) $\langle a\rangle=\langle b\rangle$ if and only if a and b are associates.

2. Let a and b be positive integers. We say that c is a common divisor of a and b if $c \mid a$ and $c \mid b$. We call the largest common divisor of a and b the greatest common divisor of a and b or $\operatorname{gcd}(a, b)$. Let $\langle a, b\rangle$ be the ideal generated by a and b. Using the fact that \mathbb{Z} is a PID show that

$$
\langle a, b\rangle=\langle\operatorname{gcd}(a, b)\rangle .
$$

Deduce that there exist integers m and n such that $m a+n b=\operatorname{gcd}(a, b)$ and if c is a common divisor of a and b then $c \mid \operatorname{gcd}(a, b)$.

3*. Consider the ring of Gaussian Integers, $\mathbb{Z}(i)=\{a+b i \mid a, b \in \mathbb{Z}\}$ with Euclidean valuation $\delta(a+b i)=$ $a^{2}+b^{2}$.
(a) For $a=1-2 i, b=3-i$, find $q, r \in \mathbb{Z}(i)$ such that $a=b q+r$, with $\delta(r)<\delta(b)$, where δ is the Euclidean norm for $\mathbb{Z}(i)$.
(b) For each of 2 and 3 either show that they are irreducible or factorise them into products of irreducibles in $\mathbb{Z}(i)$.
4. Let G be the set of all units in a ring with identity. Show that G is a group with operation the ring multiplication. For the ring $\mathbb{Z}(\sqrt{2})$ show that the group of units is infinite.

5*. Consider the integral domain $D=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$ with norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$. You may assume that $N(\alpha \beta)=N(\alpha) N(\beta)$ for all $\alpha, \beta \in D$.
(a) Prove that $\alpha \in D$ is a unit if and only if $N(\alpha)=1$.
(b) Find all units of D.
(c) Show that if $N(\alpha)=9$, then α is irreducible.
(d) By considering the product $(2+\sqrt{-5})(2-\sqrt{-5})$, show that 3 is not prime in D.
(e) Is D a unique factorization domain? Justify your answer. (Hint: In case we haven't got to it by the time you do this in a UFD primes are the same things as irreducibles.)
(Exam 2008)
6. Consider the integral domain $\mathbb{Z}(\sqrt{10})=\{a+b \sqrt{10} \mid a, b \in \mathbb{Z}\}$ with the norm $N(a+b \sqrt{10})=a^{2}-10 b^{2}$.
(a) Use the norm to describe the units of $\mathbb{Z}(\sqrt{10})$.
(b) By considering $a^{2} \bmod 10$ show that for any $x \in \mathbb{Z}(\sqrt{10})$ we have that $N(x) \bmod 10$ can only be $0,1,4,5,6,9$.
(c) Using (b) show that $2,3,4+\sqrt{10}$ and $4-\sqrt{10}$ are irreducible in $\mathbb{Z}(\sqrt{10})$.
(d) Is $\mathbb{Z}(\sqrt{10})$ a unique factorization domain ?

7*. Find all zeros, and hence factorise the following polynomials:
(a) $p(x)=x^{3}-x^{2}+2 x-2$ in $\mathbb{Z}_{3}[x]$;
(b) $q(x)=x^{4}-4 x^{3}+x^{2}-4 x$ in $\mathbb{Z}_{5}[x]$
8. Find all zeros, and hence factorise the following polynomials:
(a) $p(x)=x^{3}+2 x^{2}+2 x+1$ in $\mathbb{Z}_{7}[x]$;
(b) $q(x)=x^{4}+4$ in $\mathbb{Z}_{5}[x]$

