Groups and Rings III 2009

Assignment 6

• Please hand up solutions to the starred questions by the 3.00 pm lecture on Friday 5th June.
• Please try the unstarred questions by the tutorial on Wednesday 3rd June at 9.00 at which they will be discussed.

1*. Let \(D \) be an integral domain. Show that

(a) \(a \mid b \) if and only if \(\langle a \rangle \supseteq \langle b \rangle \)
(b) \(\langle a \rangle = D \) if and only if \(a \) is a unit
(c) \(\langle a \rangle = \langle b \rangle \) if and only if \(a \) and \(b \) are associates.

2. Let \(a \) and \(b \) be positive integers. We say that \(c \) is a common divisor of \(a \) and \(b \) if \(c \mid a \) and \(c \mid b \). We call the largest common divisor of \(a \) and \(b \) the greatest common divisor of \(a \) and \(b \) or \(\gcd(a,b) \).

Let \(\langle a,b \rangle \) be the ideal generated by \(a \) and \(b \). Using the fact that \(\mathbb{Z} \) is a PID show that \(\langle a,b \rangle = \langle \gcd(a,b) \rangle \).

Deduce that there exist integers \(m \) and \(n \) such that \(ma + nb = \gcd(a,b) \) and if \(c \) is a common divisor of \(a \) and \(b \) then \(c \mid \gcd(a,b) \).

3*. Consider the ring of Gaussian Integers, \(\mathbb{Z}(i) = \{a+bi \mid a,b \in \mathbb{Z}\} \) with Euclidean valuation \(\delta(a+bi) = a^2 + b^2 \).

(a) For \(a = 1 - 2i, \ b = 3 - i \), find \(q,r \in \mathbb{Z}(i) \) such that \(a = bq + r \), with \(\delta(r) < \delta(b) \), where \(\delta \) is the Euclidean norm for \(\mathbb{Z}(i) \).
(b) For each of 2 and 3 either show that they are irreducible or factorise them into products of irreducibles in \(\mathbb{Z}(i) \).

4. Let \(G \) be the set of all units in a ring with identity. Show that \(G \) is a group with operation the ring multiplication. For the ring \(\mathbb{Z}(\sqrt{2}) \) show that the group of units is infinite.

5*. Consider the integral domain \(D = \{a+b\sqrt{-5} \mid a,b \in \mathbb{Z}\} \) with norm \(N(a+b\sqrt{-5}) = a^2 + 5b^2 \). You may assume that \(N(\alpha\beta) = N(\alpha)N(\beta) \) for all \(\alpha,\beta \in D \).

(a) Prove that \(\alpha \in D \) is a unit if and only if \(N(\alpha) = 1 \).
(b) Find all units of \(D \).
(c) Show that if \(N(\alpha) = 9 \), then \(\alpha \) is irreducible.
(d) By considering the product \((2 + \sqrt{-5})(2 - \sqrt{-5}) \), show that \(3 \) is not prime in \(D \).
(e) Is \(D \) a unique factorization domain? Justify your answer. (Hint: In case we haven’t got to it by the time you do this in a UFD primes are the same things as irreducibles.)

(Exam 2008)

6. Consider the integral domain \(\mathbb{Z}(\sqrt{10}) = \{a+b\sqrt{10} \mid a,b \in \mathbb{Z}\} \) with the norm \(N(a+b\sqrt{10}) = a^2 - 10b^2 \).

(a) Use the norm to describe the units of \(\mathbb{Z}(\sqrt{10}) \).
(b) By considering \(a^2 \mod 10 \) show that for any \(x \in \mathbb{Z}(\sqrt{10}) \) we have that \(N(x) \mod 10 \) can only be \(0,1,4,5,6,9 \).
(c) Using (b) show that 2, 3, 4 + \sqrt{10} and 4 − \sqrt{10} are irreducible in \(\mathbb{Z}(\sqrt{10}) \).

(d) Is \(\mathbb{Z}(\sqrt{10}) \) a unique factorization domain?

7*. Find all zeros, and hence factorise the following polynomials:

(a) \(p(x) = x^3 - x^2 + 2x - 2 \) in \(\mathbb{Z}_3[x] \);
(b) \(q(x) = x^4 - 4x^3 + x^2 - 4x \) in \(\mathbb{Z}_5[x] \)

8. Find all zeros, and hence factorise the following polynomials:

(a) \(p(x) = x^3 + 2x^2 + 2x + 1 \) in \(\mathbb{Z}_7[x] \);
(b) \(q(x) = x^4 + 4 \) in \(\mathbb{Z}_5[x] \)