Groups and Rings III 2009

Assignment 5.

- Please hand up solutions to the starred questions by the 9.00am lecture on Wednesday 27th May. Either in the lecture or if earlier under the door of my office.
- Please try the unstarred questions by the tutorial on Wednesday 20th May at 9.00 at which they will be discussed.
1^{*}. Find all groups of order 91.

2*. (a) Show that no group of order 40 is simple.
(b) Is there a finite group with 12 Sylow 3 -subgroups ? Give reasons for your answer.
3. Show that G is a p-group (i.e has order a power of the prime p) if and only if every element of G has order a power of p. (Hint: Cauchy's theorem)
4. Show that no group of order 1000 is simple.
5. Find all groups of order 133.

6*. Consider the ring of real quaternions:

$$
\mathbb{R}(\mathbb{H})=\left\{x_{1}+x_{2} i+x_{3} j+x_{4} k \mid x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}\right\}
$$

We define the addition and multiplication by assuming everything is linear over the real numbers and using the usual rules of multiplications in the quaternion group. E.g. $(5+2 j)(i+3 k)=5 i+15 k+2 j i+2 j k=$ $(5+2) i+(15-2) k=7 i+13 k$ and $(1+3 j)+(7 i+2 j+k)=1+7 i+5 j+k$.
(a) If $x=x_{1}+x_{2} i+x_{3} j+x_{4} k$ define $\bar{x}=x_{1}-x_{2} i-x_{3} j-x_{4} k$ and show that $x \bar{x}=\|x\|^{2}$ where $\|x\|$ is the usual Euclidean length of a vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$.
(b) Deduce that any non-zero $x \in \mathbb{R}(\mathbb{H})$ is a unit.
(c) Deduce that $\mathbb{R}(\mathbb{H})$ is a skew-field.
7. Consider the set $\mathbb{Q}(\sqrt{5})=\{a+b \sqrt{5} \mid a, b \in \mathbb{Q}\} \subset \mathbb{Q}$.
(a) Show that $\mathbb{Q}(\sqrt{5})$ is a subring of \mathbb{Q}.
(b) Show that $\mathbb{Q}(\sqrt{5})$ is a field.

8*. Complete the following table.

Ring	Commutative	Identity	Units	Zero Divisors	Field	Integral Domain
\mathbb{Z}	yes	1	± 1	none	no	yes
$\mathbb{Z}(i)$						
\mathbb{Z}_{8}						
\mathbb{Z}_{5}						
$\mathbb{Q}(\sqrt{3})$						
$\mathbb{R}(\mathbb{H})$						
$M_{2}(\mathbb{R})$						

Note:
$\mathbb{Z}(i)=\{a+b i \mid a, b \in \mathbb{Z}\}$ is the ring of Gaussian Integers, a subring of \mathbb{C}.
$\mathbb{Q}(\sqrt{3})=\{a+b \sqrt{3} \mid a, b \in \mathbb{Q}\}$ is a subring of \mathbb{R}.
$\mathbb{R}(\mathbb{W})$ see Question 6.
You don't have to prove everything. Just fill out the table.

9*. Let D be a finite integral domain.
(a) Show that left cancellation holds in D. That is if $0 \neq x \in D$ and $x a=x b$ then $a=b$.
(b) Let $0 \neq x \in D$ and consider the map $\phi_{x}: D \rightarrow D$ defined by $\phi_{x}(a)=x a$. Show that ϕ_{x} is one to one and onto. (Hint: Recall that if X is a finite set and $f: X \rightarrow X$ is one to one then f is onto.)
(c) Deduce that D is a field.
10. Recall the construction in lectures of the field of quotients of an integral domain D which involved the set $S=\{(a, b) \mid a, b \in D, b \neq 0\}$.
(a) Show that the relation $(a, b) \simeq(c, d)$ if $a d=b c$ is an equivalence relation on S.
(b) Show that the addition

$$
[(a, b)]+[(c, d)]=[(a d+b c, b d)]
$$

is well-defined.

11*. Let R be a ring with identity 1 . Recall that for any positive integer n and element $a \in R$

$$
n \cdot a=\underbrace{a+a+\ldots+a}_{n \text { times }}
$$

The characteristic of R is the smallest positive integer n such that $n .1=0$, if such an n exists; otherwise R has characteristic 0 .
(a) Show that if R has characteristic n then $n \cdot a=0$ for all $a \in R$.
(b) If R is an integral domain with characteristic $n(n \neq 0)$ show that n is prime.
(c) (i) Deduce that every finite field F has characteristic p, for some prime p.
(ii) Further, show that $|F|=p^{m}$ for some positive integer m.
(Hint: Consider the group $(F,+)$.)
12. If R is a ring a non-zero element is called a left zero-divisor if there is some non-zero b such that $a b=0$ and similarly it is called a right zero-divisor if there is some non-zero b such that $b a=0$.
(a) In the ring $M_{n}(\mathbb{R})$ of real matrices show that A is a left zero-divisor if and only if it has non zero kernel.
(b) In the same ring show that B is a right zero-divisor if and only if it has image not equal to all of \mathbb{R}^{n}.
(c) Deduce that in $M_{n}(\mathbb{R})$ left and right zero-divisors are the same thing.
(d) Denote by \mathbb{R}^{∞} the vector space of all infinite sequences of real numbers $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$. Let $M_{\infty}(\mathbb{R})$ be the ring of all linear maps from \mathbb{R}^{∞} to itself. Find a left zero divisor in $M_{\infty}(\mathbb{R})$ which is not a right zero divisor.

Hint: For (b) and (c) remember that if W is a subspace of \mathbb{R}^{n} there is always a linear map $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with image W and a linear map Q with kernel W. For example P could be orthogonal projection onto W and Q orthogonal projection onto W^{\perp}. (d) could be tricky. Ask me if you want a hint.

