Groups and Rings III 2009

Assignment 5.

- Please hand up solutions to the starred questions by the 9.00am lecture on Wednesday 27th May. Either in the lecture or if earlier under the door of my office.
- Please try the unstarred questions by the tutorial on Wednesday 20th May at 9.00 at which they will be discussed.
- 1^{*}. Find all groups of order 91.
- 2^* . (a) Show that no group of order 40 is simple.
- (b) Is there a finite group with 12 Sylow 3-subgroups ? Give reasons for your answer.

3. Show that *G* is a *p*-group (i.e has order a power of the prime *p*) if and only if every element of *G* has order a power of *p*. (Hint: Cauchy's theorem)

- 4. Show that no group of order 1000 is simple.
- 5. Find all groups of order 133.
- 6*. Consider the ring of real quaternions:

$$\mathbb{R}(\mathbb{H}) = \{x_1 + x_2i + x_3j + x_4k \mid x_1, x_2, x_3, x_4 \in \mathbb{R}\}\$$

We define the addition and multiplication by assuming everything is linear over the real numbers and using the usual rules of multiplications in the quaternion group. E.g. (5+2j)(i+3k) = 5i + 15k + 2ji + 2jk = (5+2)i + (15-2)k = 7i + 13k and (1+3j) + (7i+2j+k) = 1 + 7i + 5j + k.

- (a) If $x = x_1 + x_2i + x_3j + x_4k$ define $\bar{x} = x_1 x_2i x_3j x_4k$ and show that $x\bar{x} = ||x||^2$ where ||x|| is the usual Euclidean length of a vector $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$.
- (b) Deduce that any non-zero $x \in \mathbb{R}(\mathbb{H})$ is a unit.
- (c) Deduce that $\mathbb{R}(\mathbb{H})$ is a skew-field.
- 7. Consider the set $\mathbb{Q}(\sqrt{5}) = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\} \subset \mathbb{Q}$.
- (a) Show that $\mathbb{Q}(\sqrt{5})$ is a subring of \mathbb{Q} .
- (b) Show that $\mathbb{Q}(\sqrt{5})$ is a field.
- 8*. Complete the following table.

Ring	Commutative	Identity	Units	Zero	Field	Integral
				Divisors		Domain
Z	yes	1	±1	none	no	yes
$\mathbb{Z}(i)$						
\mathbb{Z}_8						
\mathbb{Z}_5						
$\mathbb{Q}(\sqrt{3})$						
$\mathbb{R}(\mathbb{H})$						
$M_2(\mathbb{R})$						

Note: $\mathbb{Z}(i) = \{a + bi \mid a, b \in \mathbb{Z}\}$ is the ring of Gaussian Integers, a subring of \mathbb{C} . $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}$ is a subring of \mathbb{R} . $\mathbb{R}(\mathbb{H})$ see Question 6. You don't have to prove everything. Just fill out the table.

- 9^* . Let *D* be a finite integral domain.
- (a) Show that left cancellation holds in *D*. That is if $0 \neq x \in D$ and xa = xb then a = b.
- (b) Let $0 \neq x \in D$ and consider the map $\phi_x : D \to D$ defined by $\phi_x(a) = xa$. Show that ϕ_x is one to one and onto. (Hint: Recall that if *X* is a finite set and $f : X \to X$ is one to one then *f* is onto.)
- (c) Deduce that *D* is a field.

10. Recall the construction in lectures of the field of quotients of an integral domain *D* which involved the set $S = \{(a, b) \mid a, b \in D, b \neq 0\}$.

- (a) Show that the relation $(a, b) \simeq (c, d)$ if ad = bc is an equivalence relation on *S*.
- (b) Show that the addition

$$[(a,b)] + [(c,d)] = [(ad + bc,bd)]$$

is well-defined.

11^{*}. Let *R* be a ring with identity 1. Recall that for any positive integer *n* and element $a \in R$

$$n.a = \underbrace{a + a + \ldots + a}_{n \text{ times}}$$

The *characteristic* of *R* is the smallest positive integer *n* such that n.1 = 0, if such an *n* exists; otherwise *R* has characteristic 0.

- (a) Show that if *R* has characteristic *n* then n.a = 0 for all $a \in R$.
- (b) If *R* is an integral domain with characteristic n ($n \neq 0$) show that n is prime.
- (c) (i) Deduce that every finite field *F* has characteristic *p*, for some prime *p*.
 - (ii) Further, show that $|F| = p^m$ for some positive integer *m*.

(Hint: Consider the group (F, +).)

12. If *R* is a ring a non-zero element is called a left zero-divisor if there is some non-zero *b* such that ab = 0 and similarly it is called a right zero-divisor if there is some non-zero *b* such that ba = 0.

- (a) In the ring $M_n(\mathbb{R})$ of real matrices show that *A* is a left zero-divisor if and only if it has non zero kernel.
- (b) In the same ring show that *B* is a right zero-divisor if and only if it has image not equal to all of \mathbb{R}^n .
- (c) Deduce that in $M_n(\mathbb{R})$ left and right zero-divisors are the same thing.
- (d) Denote by \mathbb{R}^{∞} the vector space of all infinite sequences of real numbers $(x_1, x_2, x_3, ...)$. Let $M_{\infty}(\mathbb{R})$ be the ring of all linear maps from \mathbb{R}^{∞} to itself. Find a left zero divisor in $M_{\infty}(\mathbb{R})$ which is not a right zero divisor.

Hint: For (b) and (c) remember that if *W* is a subspace of \mathbb{R}^n there is always a linear map $P \colon \mathbb{R}^n \to \mathbb{R}^n$ with image *W* and a linear map *Q* with kernel *W*. For example *P* could be orthogonal projection onto *W* and *Q* orthogonal projection onto W^{\perp} . (d) could be tricky. Ask me if you want a hint.