Groups and Rings III 2009

Assignment 5.

- Please hand up solutions to the starred questions by the 9.00am lecture on Wednesday 27th May. Either in the lecture or if earlier under the door of my office.
- Please try the unstarred questions by the tutorial on Wednesday 20th May at 9.00 at which they will be discussed.

1*. Find all groups of order 91.

2*. (a) Show that no group of order 40 is simple.
(b) Is there a finite group with 12 Sylow 3-subgroups? Give reasons for your answer.

3. Show that G is a p-group (i.e has order a power of the prime p) if and only if every element of G has order a power of p. (Hint: Cauchy's theorem)

4. Show that no group of order 1000 is simple.

5. Find all groups of order 133.

6*. Consider the ring of real quaternions:
$$\mathbb{R}(i) = \{x_1 + x_2 i + x_3 j + x_4 k \mid x_1, x_2, x_3, x_4 \in \mathbb{R}\}$$

We define the addition and multiplication by assuming everything is linear over the real numbers and using the usual rules of multiplications in the quaternion group. E.g. $(5 + 2j)(i + 3k) = 5i + 15k + 2ji + 2jk = (5 + 2)i + (15 - 2)k = 7i + 13k$ and $(1 + 3j) + (7i + 2j + k) = 1 + 7i + 5j + k$.

(a) If $x = x_1 + x_2 i + x_3 j + x_4 k$ define $\bar{x} = x_1 - x_2 i - x_3 j - x_4 k$ and show that $x \bar{x} = \|x\|^2$ where $\|x\|$ is the usual Euclidean length of a vector $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$.

(b) Deduce that any non-zero $x \in \mathbb{R}(i)$ is a unit.
(c) Deduce that $\mathbb{R}(i)$ is a skew-field.

7. Consider the set $\mathbb{Q}(\sqrt{5}) = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\} \subset \mathbb{Q}$.

(a) Show that $\mathbb{Q}(\sqrt{5})$ is a subring of \mathbb{Q}.
(b) Show that $\mathbb{Q}(\sqrt{5})$ is a field.

8*. Complete the following table.

<table>
<thead>
<tr>
<th>Ring</th>
<th>Commutative</th>
<th>Identity</th>
<th>Units</th>
<th>Zero Divers</th>
<th>Field</th>
<th>Integral Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}</td>
<td>yes</td>
<td>1</td>
<td>±1</td>
<td>none</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>$\mathbb{Z}(i)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathbb{Z}_8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathbb{Z}_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbb{Q}(\sqrt{3})$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbb{R}(i)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M_2(\mathbb{R})$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note:
\(\mathbb{Z}(i) = \{ a + bi \mid a, b \in \mathbb{Z} \} \) is the ring of Gaussian Integers, a subring of \(\mathbb{C} \).
\(\mathbb{Q}(\sqrt{3}) = \{ a + b\sqrt{3} \mid a, b \in \mathbb{Q} \} \) is a subring of \(\mathbb{R} \).
\(\mathbb{R}(\mathbb{R}) \) see Question 6.
You don’t have to prove everything. Just fill out the table.

9*. Let \(D \) be a finite integral domain.

(a) Show that left cancellation holds in \(D \). That is if \(0 \neq x \in D \) and \(xa = xb \) then \(a = b \).

(b) Let \(0 \neq x \in D \) and consider the map \(\phi_x : D \to D \) defined by \(\phi_x(a) = xa \). Show that \(\phi_x \) is one to one and onto. (Hint: Recall that if \(X \) is a finite set and \(f : X \to X \) is one to one then \(f \) is onto.)

(c) Deduce that \(D \) is a field.

10. Recall the construction in lectures of the field of quotients of an integral domain \(D \) which involved the set \(S = \{(a,b) \mid a, b \in D, b \neq 0 \} \).

(a) Show that the relation \((a,b) \sim (c,d) \) if \(ad = bc \) is an equivalence relation on \(S \).

(b) Show that the addition
\[
[(a,b)] + [(c,d)] = [(ad + bc, bd)]
\]
is well-defined.

11*. Let \(R \) be a ring with identity 1. Recall that for any positive integer \(n \) and element \(a \in R \)
\[
n.a = a + a + \ldots + a \quad \text{n times}
\]
The characteristic of \(R \) is the smallest positive integer \(n \) such that \(n.1 = 0 \), if such an \(n \) exists; otherwise \(R \) has characteristic 0.

(a) Show that if \(R \) has characteristic \(n \) then \(n.a = 0 \) for all \(a \in R \).

(b) If \(R \) is an integral domain with characteristic \(n \) \((n \neq 0)\) show that \(n \) is prime.

(c) (i) Deduce that every finite field \(F \) has characteristic \(p \), for some prime \(p \).

(ii) Further, show that \(|F| = p^m \) for some positive integer \(m \).

(Hint: Consider the group \((F, +) \).)

12. If \(R \) is a ring a non-zero element is called a left zero-divisor if there is some non-zero \(b \) such that \(ab = 0 \) and similarly it is called a right zero-divisor if there is some non-zero \(b \) such that \(ba = 0 \).

(a) In the ring \(M_n(\mathbb{R}) \) of real matrices show that \(A \) is a left zero-divisor if and only if it has non zero kernel.

(b) In the same ring show that \(B \) is a right zero-divisor if and only if it has image not equal to all of \(\mathbb{R}^n \).

(c) Deduce that in \(M_n(\mathbb{R}) \) left and right zero-divisors are the same thing.

(d) Denote by \(\mathbb{R}^\infty \) the vector space of all infinite sequences of real numbers \((x_1, x_2, x_3, \ldots)\). Let \(M_\infty(\mathbb{R}) \) be the ring of all linear maps from \(\mathbb{R}^\infty \) to itself. Find a left zero divisor in \(M_\infty(\mathbb{R}) \) which is not a right zero divisor.

(Hint: For (b) and (c) remember that if \(W \) is a subspace of \(\mathbb{R}^n \) there is always a linear map \(P : \mathbb{R}^n \to \mathbb{R}^n \) with image \(W \) and a linear map \(Q \) with kernel \(W \). For example \(P \) could be orthogonal projection onto \(W \) and \(Q \) orthogonal projection onto \(W^\perp \). (d) could be tricky. Ask me if you want a hint.)