Groups and Rings III 2009

Assignment 4.

- Please hand up solutions to the starred questions by the 9.00am lecture on Wednesday 13th May. Either in the lecture or if earlier under the door of my office.
- Please try the unstarred questions by the tutorial on Wednesday 6th May at 9.00 at which they will be discussed.
- 1*. Find the torsion invariants and free rank of the abelian group

$$\langle a, b, c \mid a^3 b^3 c^6 = 1, a^{-3} b^9 c^6 = 1, b^{-9} c^{-9} = 1 \rangle$$

2. Find the torsion invariants and free rank of the abelian groups

- (a) $\langle a, b, c \mid a^3 b^3 c^6 = 1, a^{-3} b^9 c^6 = 1, b^{-9} c^{-9} = 1 \rangle$
- (b) $\langle a, b, c, d \mid a^3b^{-4}c^2d^{-4} = 1, a^3b^{-4}c^8d^8 = 1, a^{11}b^{-10}c^{18}d^4 = 1 \rangle$.

3*. Recall that if v is a non-zero vector in \mathbb{R}^n then there exists v_1, \ldots, v_{n-1} such that v, v_1, \ldots, v_{n-1} is a basis. Show that if v and w are non-zero vectors in \mathbb{R}^n then there exists an invertible matrix A such that Av = w.

- 4^* . Let the group *G* act on the set *X*.
- (a) If $x \in X$ show that the stabiliser of *G* in *x*:

$$S_G(x) = \{g \in G \mid g \star x = x\}$$

is a subgroup of *G*.

(b) Recall that we call an action transitive if it has exactly one orbit. Show that an action is transitive if and only if for every $x, y \in X$ there is a *G* such that $g \star x = y$. In such a case show that

$$\{g \in G \mid g \star x = y\}$$

is a coset of $S_G(x)$.

5. Let *X* be a set and denote by S_X the set of all one to one and onto functions $\phi: X \to X$. S_X is a group under composition of functions.

(a) If *X* and *Y* are sets and $\rho: X \to Y$ is a one to one and onto function show that

$$\begin{array}{rcl} S_X & \to & S_Y \\ \phi & \mapsto & \rho \circ \phi \circ \rho^{-1} \end{array}$$

is an isomorphism of groups.

- (b) Deduce that if *X* is a finite set then $S_X \simeq S_{|X|}$.
- (c) Let $X = \{1, 2, ..., n\}$ be acted on by S_n in the usual way. Use (c) to show that for any $i \in X$ we have $S_{S_n}(i) \simeq S_{n-1}$.
- 6^* . Let *G* be a group and S(G) be the set of all subgroups of *G*. The group *G* acts on S(G) by conjugation:

$$g \star H = g H g^{-1}.$$

- (a) Which subgroups lie in an orbit of length one?
- (b) Which groups *G* have exactly *two* orbits?

- (c) Which groups *G* have exactly *two orbits of length one*?
- (d) Determine the orbits of S_3 on $S(S_3)$.
- 7. Let *G* be a group and S(G) be the set of all subgroups of *G*. The group *G* acts on S(G) by conjugation:

$$g \star H = gHg^{-1}$$
.

- (a) What is $S_G(H)$ for $H \in S(G)$?
- (b) If *H* is a subgroup of *G* use the Orbit-Stabiliser Theorem to reprove the result from lectures that the number distinct cosets of *H* is $(G : N_G(H))$.
- 8. Let *G* be a group with |G| = 504. Show that *G* has to have subgroups of orders 7, 8 and 9.
- 9^{*}. Let *G* be a group with |G| = 1100. Show that *G* has to have subgroups of orders 4, 11 and 25.
- 10. Let *X* be the set of all polynomials $f(x_1, ..., x_n)$ with integer coefficients. If $\sigma \in S_n$, define $\sigma \star f$ by

$$(\sigma \star f)(x_1,\ldots,x_n) = f(x_{\sigma(1)},x_{\sigma(2)},\ldots,x_{\sigma(n)}).$$

For example: $(1\ 2\ 3) \star (x_1 + 4x_3^2) = x_2 + 4x_1^2$. It can be shown that this is an action of S_n on X. Consider the polynomial $g(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (x_i - x_j)$.

- (a) Show that for any transposition $(k \ l)$ we have $(k \ l) * g = -g$.
- (b) Deduce that the orbit of g is $\{g, -g\}$.
- (c) Deduce that for all $\sigma \in S_n$, $\sigma * g = g \Leftrightarrow \sigma$ is the product of an even number of transpositions.
- (d) Deduce that the stabilizer of g is A_n .
- 11*. The symmetric group S_4 acts on the set $X = \{(i, j) \mid 1 \le i, j \le 4\}$ with the following action:

$$g \star (i, j) = (g(i), g(j)) \quad \forall g \in S_4, (i, j) \in X.$$

For example, if $g = (1 \ 2 \ 3)$, then $g \star (2, 4) = (3, 4)$ and $g \star (1, 3) = (2, 1)$.

Show that with this action, S₄ has exactly *two* orbits on X, and give a representative of each orbit.

Verify the Orbit-Stabilizer Theorem for these two representatives.

12. Let *p* be a prime and consider $G = C_p$. Let *n* be a positive integer. A *bracelet* consists of *p* beads, each of which can be any of *n* different colours, placed in a circle. The group *G* acts on the set *B* of all bracelets by *rotation*.

(a) Show that the number of bracelets fixed by $g \in G$ is given by

$$B_g = \begin{cases} n^p, & \text{if } g = e \\ n, & \text{if } g \neq e. \end{cases}$$

(b) Hence find the number of essentially different bracelets. (Two bracelets are thought of as the same if one can be rotated into the other.) Calculate this number if p = 17, n = 4.