Groups and Rings III 2009

Assignment 3.

- Please hand up solutions to the starred questions during or before the 9.00 lecture on Tuesday 28th April.
- Please try the unstarred questions by the tutorial on Wednesday 8th April 9.00 at which they will be discussed.
- Please note I will be not be available to answer questions during the mid-semester break.
- Note that I use the notation *a* | *b* to mean that *a* divides *b*.

1*. If C_m is a subgroup of C_n explain why it is a normal subgroup and show that quotient subgroup C_m/C_n is $C_{n/m}$.

2*. (a) Let C_{12} be generated by x and let $H = \langle x^4 \rangle$. List the elements of the factor group C_{12}/H . Find a generator of C_{12}/H and hence show that it is cyclic.

(b) Find all the composition series of C_{24} . Show that in each case the length of the composition series and the set of quotients is the same.

3. Let $G = G_1 \times G_2 \times \cdots \times G_k$ be a direct product of finite groups and let $g \in G$ with $g = (g_1, \dots, g_k)$ where each $g_i \in G_i$. Let *d* have the property that $|g_i| | d$ for all $i = 1, \dots, k$. Show that $g^d = e$.

4. Recall the fact that every natural number can be decomposed uniquely into a product of primes.

(a) Let *a* and *b* be natural numbers. By comparing the common primes in the prime decompositions of *a* and *b* show that

$$\operatorname{lcm}(a,b)\operatorname{gcd}(a,b) = ab$$

where lcm(a, b) is the least common multiple of a and b and gcd(a, b) is the greatest common divisor of a and b.

- (b) Show that $C_m \times C_n \simeq C_{mn}$ if and only if gcd(m, n) = 1.
- (c) Using this result show that if $d = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ where the p_i are distinct primes then

$$C_d \simeq C_{p_1^{a_1}} \times C_{p_2^{a_2}} \times \cdots \times C_{p_k^{a_k}}$$

5. (a) If *n* is a natural number and *G* any group show that any homomorphism $f: C_n \to G$ has cyclic image. (Hint: You may use Question 1 or argue directly.)

(b) If *n* and *m* are co-prime (that is gcd(m, n) = 1) show that the only homomorphism $f: C_n \to C_m$ is given by f(g) = e for all $g \in C_n$.

6^{*}. Let *H* and *K* be groups and define a binary operation

$$H \times K \times H \times K \to H \times K$$
$$((h_1, k_1)(h_2, k_2)) \mapsto (h_1 h_2, k_1 k_2)$$

- (a) Show that this binary operation makes $H \times K$ is a group.
- (b) Show that $H_0 = \{(h, e) \mid h \in H\}$ is a subgroup of $H \times K$.
- (c) Show that the map $\iota_H: H \to H \times K$ defined by $\iota_H(h) = (h, k)$ is a one-to-one homomorphism with image H_0 .
- (d) Show that the map $\pi_K : H \times K \to K$ defined by $\pi_K((h, k)) = k$ is an onto homomorphism with kernel H_0 .

- 7. Let *G* be an abelian group.
- (a) Show that Tor(G), the set of all elements of finite order, is a subgroup of *G*.
- (b) Show that $G/\operatorname{Tor}(G)$ is a torsion-free group.

8*. Let $U = \{z \in \mathbb{C}^{\times} \mid |z| = 1\} < \mathbb{C}^{\times}$ and $\mathbb{R}_{>0} = \{x \in \mathbb{R}^{\times} \mid x > 0\}$. Show that:

- (a) $\mathbb{C}^{\times} \simeq U \times \mathbb{R}_{>0}$. (Hint: polar decomposition)
- (b) $\mathbb{R}^{\times} \simeq \mathbb{Z}_2 \times \mathbb{R}_{>0}$.

9. For each of the following groups find the torsion coefficients.

- (a) $C_8 \times C_{30} \times C_{60}$
- (b) $C_{12} \times C_{30} \times C_{150}$
- 10^{*}. For each of the following groups find the torsion coefficients.
- (a) $C_{30} \times C_{36} \times C_{80}$
- (b) $C_{35} \times C_{55} \times C_{75}$
- 11. Find all abelian groups of order 504.
- 12^* . Find all abelian groups of order 450.

[Additional questions can be found in Fraleigh.]