Groups and Rings III 2009

Assignment 2.

- Please hand up solutions to the starred questions by the 4.00 pm on Friday 27th March. Either in the lecture or if earlier under the door of my office.
- Please try the unstarred questions by the tutorial on Wednesday 25th at 9.00 at which they will be discussed.

1^{*}. (a) If *G* is a finite group and $g \in G$ show that $g^{|G|} = e$.

(b) Prove Fermat's Little Theorem which says that if *p* is a prime and 0 < a < p then $a^{p-1} \equiv 1 \mod p$.

(c) Let $H \triangleleft G$ and (G:H) = m. Show that for any $g \in G$ we have $g^m \in H$.

- 2. In this question we determine the conjugacy classes of S_n .
- (a) Let $a = (i_1 i_2 \cdots i_r)$ be a cycle and τ any permutation. Show that $\tau a \tau^{-1} = (\tau(i_1)\tau(i_2)\ldots\tau(i_r))$. Use this to argue that any two cycles of the same length are conjugate.
- (b) Define the cycle structure of a permutation π to be the unordered lengths of the cycles in a decomposition of π into disjoint cycles. Deduce that any two permutations are conjugate if they have the same cycle structure.
- (c) Show that any two permutations which are conjugate have the same cycle structure.
- (d) Recalculate the conjugacy classes of S_3 which we did in class using these results.

3*. Determine the conjugacy classes of S_4 . You may use the result from Question 1. Pick an element π in each class and determine $C_{S_4}(\pi)$.

- 4. . Consider the quaternion group \mathbb{H} .
- (a) Decompose \mathbb{H} into conjugacy classes.
- (b) Calculate $C_G(x)$ for each $x \in \mathbb{H}$.
- (c) Calculate $Z(\mathbb{H})$.

5*. (a) If *G* is a group show that Z(G), the centre of *G*, is a subgroup of *G*.

(b) Show that if $xy \in Z(G)$ then xy = yx.

(c) Show that $Z(GL(n, \mathbb{C})) \simeq \mathbb{C}^{\times}$ and $Z(SL(n, \mathbb{C})) \simeq U_n$. (Hint: Assume *X* is in the centre and consider the equation EX = XE where *E* is an elementary matrix as in Mathematics I. Try *E* so that *EX* is *X* with a row multiplied by a constant $a \in \mathbb{C}^{\times}$ and then try an *E* that does a row swap. Remember that when you multiply on the left by *E* it performs elementary column operations.)

6. Consider the group D_4 of symmetries of the square whose vertices are labelled anti-clockwise. Regard it as a subgroup of S_4 by the permutations of the vertices so that

$$D = \{1, (1234), (13)(24), (1432), (14)(23), (12)(43), (13), (24)\}.$$

- (a) Partition D_4 into conjugacy classes $[x_1], [x_2], \dots, [x_r]$.
- (b) Calculate $|C_{D_4}(x_i)|$ for each x_i and hence find the group $C_G(x_i)$ for each x_i .

7^{*}. (a) If H < G prove that $N_G(H)$ is a subgroup of G containing H.

(b) In S_3 find all the conjugates of $H = \{1, (12)\}$.

(c) Find the normaliser of H in S_3 . You can use results from class. Verify the formula for the number of conjugacy classes we proved in class.

8. (a) If *H* and *K* are subgroups of *G* with $H \triangleleft G$ show that

$$HK = \{hk \mid h \in Hk \in K\}$$

is a subgroup of *G*.

(b) Let *H* and *K* be subgroups of a group *G*. Show that *HK* is a subgroup of *G* if an only if HK = KH.

9. Let *G* be a group with $N \triangleleft G$ and $N \neq \langle e \rangle$.

- (a) Prove that *N* is a union of conjugacy classes.
- (b) If *G* is a *p*-group show that $Z(G) \cap N = \langle e \rangle$. (Hint: Use the same idea that was used in class to show that $Z(G) \neq \langle e \rangle$ for *p*-groups.)

10^{*}. (a) If $g \in G$ define a function $\operatorname{Ad}_g: G \to G$ by $\operatorname{Ad}_g(x) = gxg^{-1}$. Show that Ad_g is a group homomorphism.

- (b) If *H* is a subgroup of *G* and $g \in G$ show that gHg^{-1} is a subgroup of *G* which is isomorphic to *H*.
- (c) If x and y are conjugate in G show that $C_G(x)$ and $C_G(y)$ are isomorphic.

11. Let $f: G \to H$ be a homomorphism of groups. If $K \subset G$ define $f(K) = \{f(k) \mid k \in K\} \subset H$ and if $L \subset H$ define $f^{-1}(L) = \{g \in G \mid f(g) \in L\} \subset G$.

- (a) If K < G show that f(K) < H.
- (b) If L < H show that $f^{-1}(L) < G$.
- (c) If $K \triangleleft G$ and f is onto show that $f(K) \triangleleft H$.
- (d) If $L \triangleleft H$ show that $f^{-1}(L) \triangleleft G$.

12*. For $a \neq 0$ and b in \mathbb{Z}_7 define a function

$$F_{a,b}: \mathbb{Z}_7 \to \mathbb{Z}_7$$

by $F_{a,b}(x) = ax + b$. The set of all these functions forms a group *G* under composition. (You may assume this.)

- (a) Determine |G| and calculate $F_{a,b} \circ F_{c,d}(x) = F_{ab}(F_{c,d}(x))$. Use this to find e, f such that $F_{a,b} \circ F_{c,d} = F_{e,f}$.
- (b) Show that *G* is non-abelian.
- (c) Show that the mapping $f: G \to \mathbb{Z}_7^{\times}$ given by $f(F_{a,b}) = a$ is a homomorphism. Find ker(f). Write down a normal subgroup of G.

[Additional questions can be found in Fraleigh.]