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Lecture 1. Monday 28th July

1. Introduction.

Discussion of what algebraic topology is good for.

2. Categories, groupoids and functors

Definition 2.1. A category C consists of two collections Mor�C� (called morphims of C) and Ob�C� (called
objects of C) with two maps s; t : Mor�C� ! Ob�C� called source and target satisfying the following require-
ments:

If X;Y 2 Ob�C� denote by MorC�X; Y� the set of all morphisms f with s�f � � X and t�f � � Y . Then we
have a composition

MorC�X; Y��MorC�Y ; Z�! MorC�X;Z�
�f ; g� , g � f

which satisfies an associativity condition �f � g� � h � f � �g � h� whenever the compositions are defined.
Moreover for every X 2 Ob�C� there is an identity morphism 1X 2 MorC�X;X�which satisfies 1Y �f � f �1X �
f for every f 2 MorC�X; Y� and every X;Y 2 Ob�C�.
Note 2.1. Sometimes we denote Mor�X; Y� � MorC�X; Y�.

Note 2.2. If f 2 Mor�X; Y� then we write f : X ! Y or X
f! Y .

Definition 2.2. If C is a category a morphism f 2 MorC�X; Y� is called invertible if there exists g 2 MorC�Y ;X�
such that g � f � 1X and f � g � 1Y .

Note 2.3. As with groups we can show that if a morphism f is invertible then the corresponding morphism g
is unique. We call it the inverse of f and denote it by f�1.

Definition 2.3. A category in which all morphisms are invertible is called a groupoid.

Definition 2.4. A groupoid is called transitive if Mor�X; Y� �; for all objects X and Y .

Proposition 2.5. Let G be a groupoid. Then

(1) For any object X, MorG�X;X� is a group.
(2) For any morphism f 2 MorG�X; Y� the function

�f : MorG�X;X�! MorG�Y ; Y�

defined by �f �g� � fgf�1 is an isomorphism of groups.

Corollary 2.6. For a transistive groupoid G the groups MorG�X;X� are all isomorphic.
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Definition 2.7. A functor F between two categories C and D is a pair of functions F : Mor�C� ! Mor�D� and
F : Ob�C�! Ob�D� such that:

(1) F�MorC�X; Y�� � MorD�F�X�; F�Y�� for all X;Y 2 Ob�C�.
(2) F�1X� � 1F�X� for all X 2 Ob�C�.
(3) If f 2 MorC�X; Y� and g 2 MorC�Y ; Z� then F�g � f� � F�g� � F�f� for all X;Y 2 Ob�C�.
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Note 2.4. Sometimes we have all the conditions of a functor except that F�MorC�X; Y�� � MorD�F�Y�; F�X��
for all X;Y 2 Ob�C� and F�g � f� � F�f� � F�g�. In this case we call it a contravariant functor and make the
distinction by calling the first case above a covariant functor.

Lemma 2.8. Let F : C ! D be a functor. If f 2 MorC�X; Y� is a morphism in C which is invertible then F�f� is
invertible.

3. Topology

3.1. Metric Spaces.

Definition 3.1. Let X be a set. Then a map d : X �X ! R is called a metric on X if it satisfies:

(1) d�x;y� � 0 for all x;y 2 X and d�x;y� � 0 if and only if x � y .
(2) d�x;y� � d�y;x� for all x;y 2 X.
(3) d�x; z� � d�x;y�� d�y; z� for all x;y; z 2 X.

Note 3.1. If d is a metric on X the pair �X;d� is called a metric space.

Proposition 3.2. Let X be any set and define

d�x;y� �
(

0 x � y
1 x � y

Then d is a metric. This metric is called the discrete metric on X.

Example 3.1. Let �X;d� be a metric space and Y � X. Define dY : Y � Y ! R by restricting d : X � X ! R to
Y � Y � X �X. Then dY is a metric on Y . This metric is called the subspace metric on Y .

Definition 3.3. If �X;d� is a metric space and x 2 X and � > 0 then we call

B�X;�� � fy j d�x;y� < �g
the open ball around x of radius �.

Definition 3.4. Let �X;d� be a metric space. We call a subset U � X open if for all x 2 U there is a � > 0 such
that x 2 B�x;�� � U .

Proposition 3.5. An open ball is an open set.

Definition 3.6. Let �X;d� be a metric space and let Td be the collection of all open subsets of X. Then:

(1) ;; X 2 Td.
(2) If U1 and U2 are in Td then U1 \U2 2 Td.
(3) If U� is in Td for all � 2 I then [�2IU� is in Td.

3.2. Topological Spaces.

Definition 3.7. Let X be a set and T � P�X� be a collection of subsets of X. We say that T is a topology on
X if it satisfies:

(1) ;; X 2 T .
(2) If U1 and U2 are in T then U1 \U2 2 T .
(3) If U� is in T for all � 2 I then [�2IU� is in T .

Note 3.2. If T is a topology we call the pair �X;T � a topological space and the elements of T open subsets of
X.

Definition 3.8. If X is a set then T � P�X� is called the discrete topology on X.

Definition 3.9. If X is a set then T � f;; Xg is called the trivial topology.

Proposition 3.10. Let �X;d� be a metric space and let Td be the set of all open subsets. Then Td is a topology
on X.

Note 3.3. If �X;d� is a metric space we call the topology Td the metric topology on X.
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Definition 3.11. If �X;T � is a topological space and there exists a metric d on X such that T � Td then we
say that �X;T � is metrizable.

Definition 3.12. We say a topological space X is Hausdorff if for all x � y 2 X there exist open sets U and V
with x 2 U , y 2 V and U \ V � ;.

Proposition 3.13. Metric spaces are Hausdorff.

Corollary 3.14. Not all topological spaces are metrizable.

Definition 3.15. If �X;T � is a topological space and C � X we say that C is closed if X � C is open.

Proposition 3.16. Let �X;T � be a topological space. Then:

(1) ; and X are closed,
(2) if C1 and C2 are closed then C1 [ C2 is closed, and
(3) if C� is closed for all � 2 I then \�2IC� is closed.

Proposition 3.17. Let �X;T � be a topological space and Y � X. Define

TY � fU \ Y j U 2 T g
then TY is a topology on Y . This topology is called the subspace topology on Y .

Proposition 3.18. Let �X;d� be a metric space and Y � X. Then the two topologies:

(a) TdY — the topology induced by the subspace metric, and
(b) �Td�Y — the subspace topology induced from the metric topology on X

are the same.

Proposition 3.19. Let �X1;T1� and �X2;T2� be topological spaces and let X � X1 � X2. Define T � P�X� by
requiring that U 2 T if for all �x1; x2� 2 U there exists U1 open in X1 and U2 open in X2 with

�x1; x2� 2 U1 �U2 � U:
Then T is a topology on X. This topology is called the product topology on X1 �X2.

3.3. Continuous functions.

Definition 3.20. Let X and Y be topological spaces. We say that f : X ! Y is continuous if for every open
subset U � Y we have f�1�U� � X open.

Definition 3.21. Let �X;dX� and �Y ;dY � be metric spaces and f : X ! Y . We say that f is continuous at x if
for all � > 0 there is a � > 0 such that for all x0 2 X we have

d�x;x0� < �) d�f�x�; f �x0�� < �:
If f is continuous at x for all x 2 X we say that f is continuous.
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Proposition 3.22. Let f : X ! Y be a function between metric spaces. Then f is continuous as a function
between metric spaces if and only if it is continuous as a function between topological spaces with the metric
topologies.

Proposition 3.23. Let f : X ! Y be a map between topological spaces. Then f is continuous if and only if for
all closed subsets C � Y we have f�1�C� � X closed.

Proposition 3.24. Let X, Y and Z be topological spaces and assume f : X ! Y and g : Y ! Z are continuous.
Then g � f : X ! Z is continuous.

Proposition 3.25. Let X and Y be topological spaces. If z 2 X then the following are continuous:

(1) �X : X � Y ! X defined by �X�x;y� � x
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(2) �z : Y ! X � Y defined by �z�y� � �z;y�.
Corollary 3.26.

(1) Let f : Z ! X � Y be given by f�z� � �f1�z�; f2�z�� where f1 : Z ! X and f2 : Z ! Y . Then if f is
continuous we have that f1 and f2 are continuous.

(2) If f : X � Y ! Z is continuous and x 2 X then fx : Y ! Z defined by fx�y� � f�x;y� is continuous.

Proposition 3.27. Let f : X ! Y1 � Y2 be defined by f�x� � �f1�x�; f2�x�� where f1 : X ! Y1 and f2 : X ! Y2.
Then f continuous if and only if f1 and f2 are continuous.

Proposition 3.28. If Y � X is given the subspace topology and C � Y then C is closed in Y if and only if
C � Y \D for some D closed in X.

Proposition 3.29. If Y � X is closed then C � Y is closed in Y if and only if it is closed in X.

Lemma 3.30 (Pasting Lemma). Let X � C \D where C and D are closed in X. Let f : C ! Y and g : D ! Y be
continuous maps into a space Y such that f�x� � g�x� for all x 2 C \D. Then h : X ! Y defined by

h�x� �
(
f�x� x 2 C
g�x� x 2 D

is a continuous map.

Definition 3.31. A continuous function f : X ! Y between topological spaces is called a homeomorphism if
it has a continuous inverse. Two topological spaces are called homeomorphic if there is homeomorphism
between them.

4. Homotopy theory

4.1. Homotopy.

Definition 4.1. Let f ; g : X ! Y be two continuous functions between topological spaces. We say that f is
homotopic to g if there exists a continuous function

H : �0;1��X ! Y
satisfying H�0; x� � f�x� and H�1; x� � g�x� for all x 2 X.

Note 4.1. We denote by Hs : X ! Y the function Hs�x� � H�s;x�. Note that each Hs is continuous and that
H0 � f and H1 � g.

Note 4.2. If f is homotopic to g we write f ’ g.
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4.2. Path homotopy.

Definition 4.2. Let X be a topological space and x0 and x1 be points in X. Then a path in X from x0 to x1 is
a continuous map f : �0;1�! X such that f�0� � x0 and f�1� � y .

Note 4.3. If x0 � x1 � x then we call a path from x0 to x1 a loop in X at x.

Definition 4.3. Two paths f ; f 0 fromx0 tox1 are called path homotopic if we have a continuous mapH : �0;1��
�0;1�! X such that, if we define Hs�t� � H�s; t�, then each Hs : �0;1�! X is a path from x0 to x1 and F0 � f
and F1 � f 0.
Proposition 4.4. Let X and Y be topological spaces. Then homotopy is an equivalence relation on continuous
functions from X to Y and path homotopy is an equivalence relation on paths from x0 to x1 for any points x0

and x1 in X.

Note 4.4. The set of all homotopy classes of maps from X to Y is denoted �X; Y�.

Note 4.5. We denote the equivalence class of a path, or loop f by �f �.
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Note 4.6. We denote by ��X;x0; x1� the set of all homotopy classes of paths in X from x0 to x1 and denote
�1�X;x� � �1�X;x;x�.

Note 4.7. We denote by Õ�X� the union

Õ�X� � [
x0;x12X

�1�X;x0; x1�

and call it the fundamental groupoid of X. Note that as yet it is only a set we have to show how to make it
into a groupoid.

Note 4.8. Notice that if we have a homotopy H between two loops at x then each Hs is also a loop at x for
every s. The set of all equivalence classes of loops at x is denoted �1�X;x� and called the fundamental group
of X (at x).
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Definition 4.5. If f and g are paths in X we call them composable if f�1� � g�0�.

Given f and g composable paths consider the function from �0;1� to X defined by

�f � g��t� �
(
f�2t� 0 � t � 1=2
g�2t � 1� 1=2 � t � 1:

By the Pasting Lemma this is a path from f�0� to g�1� called the product of f and g.

Lemma 4.6. Let f and g be composable paths. If f is path homotopic to f 0 and g is path homotopic to g0 then
f 0 and g0 are composable paths and f � g is path homotopic to f 0 � g0.

This lemma shows that there is a well-defined product

�1�X;x0; x� ��1�X;x1; x2�! �1�X;x0; x3�

which sends ��f �; �g�� to ��f � g��. We denote �f � g� by �f �� �g�.
Proposition 4.7. Assume we have points x0; x1; x2 and x3 in X and paths f from x0 to x1, g from x1 to x2

and h from x2 to x3. Then
�f � g�� h ’p f � �h� g�:
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Proposition 4.8. If x 2 X is a point in a topological space denote by ex the constant path ex�t� � x. If f is a
path in X denote by f�1 the path f�1�t� � f�1� t�. Then if f is a path from x0 to x1 we have

(1) ex0 � f ’p f and f � ex1 ’p f
(2) f�1 � f ’p ex1 and f � f�1 ’p ex1 .

Proposition 4.9. The pair Õ�X� and X define the morphisms and objects of a groupoid with the product of
homotopy classes of paths as composition. The source and target maps are defined by s��f �� � f�1� and
t��f �� � f�0�. The inverse of �� is ��1� where �1�t� � �1� t�. The identity at x 2 X is the equivalence
class of the constant path ex�t� � x. This groupoid is called the homotopy groupoid of X and denoted Õ�X�.
Proposition 4.10. If x 2 X then �1�X;x� is a group and if f is path from x0 to x1 the map

(4.1)
�1�X;x0� ! �1�X;x1�
�h� , �f�1�� �h�� �f �

is an isomorphism of groups.

Definition 4.11. We say that a topological space X is path-connected if for any x;y 2 X there is a path from
x to y .

Proposition 4.12. The relation ‘there is a path joining x to y ’ is an equivalence relation on any topological
space.

Note 4.9. The equivalence classes under this relation are called the path-components of X.
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Proposition 4.13. A topological space X is path-connected if and only if the homotopy groupoid is transitive.

Proposition 4.14. If X is path connected and x;y 2 X then �1�X;x� is isomorphic to �1�X;y�.

Note 4.10. Because of this proposition we often drop the reference to the point x for a path connected space
X and just refer to the fundamental group �1�X� of X.

Note 4.11. This should be compared to Lecture 2 where it is shown that this is really a result about groupoids.

Consider the category Top. It is useful to modify this slightly as follows.

Definition 4.15. A pointed topological space is a pair �X;x� where X is a topological space and x 2 X is a
point in X. A morphism of pointed topological spaces �X;x� ! �Y ;y� is a continuous map f : X ! Y such
that f�x� � y .

The resulting category of pointed topological spaces is denoted Top�.

Let F : X ! Y be a continous map and let f be a path in X. Then F �f is a path in Y . It is easy to check that
if f is homotopic to f 0 by a homotopy H then F � f is homotopic to F � f 0 by the homotopy F �H. So we can
define

F� : �1�X;x0; x1� ! �1�Y ; F�x0�; F�x1��
�f � , �F � f�

Note 4.12. In lectures we just talked about the case x0 � x1 � x but the result is the same.

Proposition 4.16. Let F : X ! Y be a continuous function between topological spaces and f and g be composable
paths in X. Then F � �f � g� � �F � f�� �F � g�. If x 2 X then F��ex� � eF�x�.

Hence the pair F� : Õ�X� ! Õ�Y� and F : X ! Y defines a functor from the fundamental groupoid of X to
the fundamental groupoid of Y .
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Proposition 4.17. Let F : X ! Y and G : Y ! Z be continuous functions between topological space. Then
�G � F�� � G� � F�. Moreover if id : X ! X is the identity map then id� � idÕ�X�.

Hence the pair of maps
Mor�Top� ! Mor�Grpd�

F , F�
and

Ob�Top� ! Ob�Grpd�
X , Õ�X�:

defines a functor Top! Grpd which we denote by Õ.

Note 4.13. It follows that if F : X ! Y is a continuous function then F� : �1�X;x� ! �1�Y ; F�x�� is a group
homomorphism.

Proposition 4.18. If F : X ! Y is homeomorphism then F� : �1�X;x�! �1�Y ; F�x�� is a group isomorphism.

Definition 4.19. If F : X ! Y is a continuous map between topological spaces we say it is a homotopy equiva-
lence if there is a continuous map g : Y ! X such that g � f ’ idX and f � g ’ idY . We say two spaces X and
Y are homotopy equivalent of there is a homotopy equivalence from X to Y .

Proposition 4.20. If F : X ! Y is a homotopy equivalence then F� : �1�X;x�! �1�Y ; F�x�� is an isomorphism.

Lemma 4.21. (Square Lemma) Let H : �0;1�� �0;1�! X be a continuous function. Define �;�; ; � : �0;1�! X
by ��t� � H�t;0�, ��t� � H�1; t�, �t� � H�t;1� and ��t� � H�0; t� for all t 2 �0;1�. Then �� � ’p �� .

Proposition 4.22. Let F;G : X ! Y be homotopic by H : �0;1��X ! Y . Let f : �0;1�! X satisfy f�0� � x0 and
f�1� � x1. For any x 2 X define a path �x�t� � H�t;x� then

F � f ��x1 ’p �x0 �G � f :
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Proposition 4.23. Let F : X ! X be homotopic to the identify map idX : X ! X. Then F� : �1�X;x� !
�1�X; F�x�� satisfies F � f ’p ��1

x � f ��x .
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Definition 4.24. Let F;G : C ! D be functors between categories C and D. A natural transformation � from
F to G assigns to every object X in C a morphism �X : F�X� ! G�X� such that for every function f : X ! Y
the diagram

F�X� �X----------------------------------------------------------------------------------------------------------------------------! G�X�??yF�f� ??yG�f�
F�Y� �Y----------------------------------------------------------------------------------------------------------------------------! G�Y�

commutes.

Note 4.14. Note that the path �x�t� � H�x; t� constructed above defines a natural transformation between
the two functors F�; G� : Õ�X�! Õ�Y� because we have the commuting diagram:

F�x0�
�x0----------------------------------------------------------------------------------------------------------------------------! G�x0�??yF��f � ??yG��f �

F�x1�
�x1----------------------------------------------------------------------------------------------------------------------------! G�x1�

Definition 4.25. A topological space is called simply connected if it is path connected and its fundamental
group is zero.

Definition 4.26. A topological space X is called contractible if there exists x0 2 X such that the constant map
x̂0 : X ! X defined by x̂0�x� � x0 is homotopic to the identity map idX : X ! X.

Example 4.1. If X � Y � Rn then the identity map is constractible to the constant map to zero by F�s; x� � sx.

Example 4.2. Let X be a star shaped region in Rn, that is a region X � Rn with a point x 2 X with the property
that that for every other point y 2 X the line segment from X to y is also in X. Then X is contractible.

Note 4.15. The converse is not true. We shall see later that �1�S2� � 0 and S2 is certainly path-connected but
it is not contractible.

Proposition 4.27. If X is contractible then X is simply connected.

Definition 4.28. Let A � X. We call r : X ! A a retraction if r�a� � a for all a 2 A and we call A a retract of
X.

Definition 4.29. Let � : A ! X be the inclusion map then r � � � idA. If � � r ’ idX we call A a deformation
retract of X and r a deformation retraction.

Proposition 4.30. If A � X is a deformation retract then �1�A;a� ’ �1�X;a� for a 2 A.
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Proposition 4.31.
�1�X � Y ; �x;y�� ’ �1�X;x���1�Y ;y�

4.3. The van Kampen Theorem.

Note 4.16. Recall that a topological space X is called compact if for any collection of open setU � fU� j � 2 Ig
with X �

S
�2I U� there is a finite collection such that X � U�1 [ U�2 [ � � � [ U�n . (Every open cover has a

finite subcover). A subset of a Rn is compact if and only if it is closed and bounded (Heine-Borel Theorem).

Lemma 4.32. If �0;1� � U [ V then there exists 0 � t0 < t1 < t2 < � � � < tn � 1 such that each �ti; ti�1� is a
subset of either U or V .

Theorem 4.33 (Weak van Kampen Theorem). Let X be a topological space with X � U [ V for U , V open and
simply connected and U \ V �; and path connected. Then X is siomply connected.
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Example 4.3. Sn � Rn�1 is simply connected for n � 2.

Definition 4.34. If G and H are groups we define the free product, G � H, as follows. Take all words
g1h1g2h2 : : : gnhn with product given by justaposition. Let 1 be the empty word. Put on all the obvious
relations such as g11Hg2 � g1g2, 1H � 1, etc. The result is a group called the free product of G and H.

Theorem 4.35 (General van Kampen Theorem). Let X be a topological space, U and V open sets and X � U[V .
Assume, U , V and U \ V are path connected. Let �U : U \ V ! U and �V : U \ V ! V be the inclusion maps.
Then, if x 2 U \ V , there is a surjective homomorphism:

�1�U;x���1�V ;x�! �1�X;x�

with kernel K generated by all elements of the form

��U����f ��� ��V ����f ��1�

where �f � 2 �1�U \ V;x�. Hence

�1�X;x� ’
�1�U;x���1�V ;x�

K
:
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In the next section assume all topological spaces are Hausdorff.

5. Covering spaces and the fundamental group of the circle

Proposition 5.1. The interval �a; b� is compact and path connected.

Proposition 5.2. If f : �a; b� ! X is continuous, where X is a disjoint union of open sets U� for � 2 I, then
there is some � 2 I with f��a; b�� � U�.

Definition 5.3. Let p : E ! B be a continuous, surjective map. We say that an open set U � B is evenly covered
if p�1�V� is a disjoint union of open sets V� such that

pjV� : Va ! U
is a homeomorphism.

The collection fV�g is called a partition of p�1�U� into slices.

Definition 5.4. Let p : E ! B be a continuous, surjective map. We sat that p is a covering map and E a covering
space if for all x 2 B there is an open set U 3 x which is evenly covered.

Note 5.1. If p : E ! B is a covering space and p 2 B then p�1�b� has the discrete topology as a subspace of E.

Proposition 5.5. If S1 � R2 and p : R! S1 is the map p�t� � �cos�2�x�; sin�2�x�� then p is a covering map.

Definition 5.6. Let p : E ! B be a continuous, surjective map. If f : X ! B is continuous then a lift of f is a
continuous map f̂ : X ! E with p � f̂ � f .

Proposition 5.7 (Path lifting property). Let p : E ! B be a covering space with p�e� � b where e 2 E. Let
f : �0;1�! B with f�0� � b. Then f has a unique lift f̂ : �0;1�! E with f̂ �0� � e.
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Lemma 5.8. Let fU� j � 2 Ig be an open cover of �0;1�� �0;1� and let s 2 �0;1�. There there exists � > 0 and
0 � t0 < t1 < � � � < tn � 1 such that for all i � 0; : : : ; n�1 there is some � 2 I with �s��; s�����ti; ti�1� � U�.

Proposition 5.9 (Covering homotopy property). Let p : E ! B be a covering space with p�e0� � b0 where
e0 2 E. If f ; g : �0;1� ! B are paths from b0 to b1 and H : �0;1� � �0;1� ! B is a path homotopy from f to g
then H has a unique lift Ĥ : �0;1�� �0;1�! E such that Ĥ�0;0� � e0. Moreover Ĥ is a path homotopy between
f̂ and ĝ.
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Proposition 5.10. Let p : E ! B be a covering space with p�e0� � b0 for e0 2 E. let F � p�1�b0�. Then there is
a map � : �1�B; e0�! p�1�b0� such that if we consider

�1�E; e0�
p�! �1�B; b0�

�! F
such that

(1) p� is injective,
(2) � is surjective, and
(3) ��1�e0� � im�p��.

Note 5.2. This is a statement about sets. To show what the fundamental group is we need to work a little harder
in particular cases. Usually F has some natural structure as a group and we prove that � is a homomorphism.

Proposition 5.11. �1�S1� � Z

Lecture 13. Thursday 11th September

6. Applications of homotopy theory

6.1. Brouwer Fixed Point Theorem. Define the two dimensional disk D2 � f�x;y� j x2 � y2 � 1g. Notice
that S1 � D2.

Theorem 6.1 (Brouwer Fixed Point Theorem). If f : D2 ! D2 is a continuous function then there is a d 2 D2

with f�d� � d. (i.e f has a fixed point)

Lemma 6.2. There is no retraction r : D2 ! S1.

6.2. Degree of a map f : S1 ! S1.

Definition 6.3. Consider f : S1 ! S1 and define F�t� � f�cos�2�t�; sin�2�t�� where F : �0;1� ! S1. Lift F to
F̂ : �0;1�! R and define

deg�f � � F̂�1�� F̂�0�:
This is called the degree (or winding number) of F .

Proposition 6.4. The degree of f is an integer and independent of the choice of the lift F̂ . It also depends only
on the homotopy class of f .

Note 6.1. If the loops in question are differentiable we can construct the degree by the integral

1
2�

Z
f 0�t�
f �t�

dt:

which calculates the winding number of f .

Theorem 6.5. Let p�z� � zn�c1zn�1�� � ��cn be a polynomial of degree n. Then there is a z0 2 C such that
p�z0� � 0.

7. Singular Homology

7.1. Definitions.

Definition 7.1. If q � 0 we define the standard q-simplex 4q � Rq�1 by

4q � f�t0; : : : ; tq� j
qX
i�0

ti � 1; ti � 0 8i � 0; : : : ; qg � Rq

Definition 7.2. Given a topological space X a (singular) q-simplex in X � is a continuous map � : 4q ! X. We
denote the set of all singular q-simplices in X by 4q�X�.
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Lecture 14. Monday 15th September

Definition 7.3. Define Sq�X� to be the free abelian group generated by 4q�X�. Call the elements of Sq�X�
(singular) q-chains.

Definition 7.4. For q > 0 define F iq : 4q�1 !4q, 0 � i � q (the ith face map) by

F iq�t0; : : : ; tq�1� � �t0; t1; : : : ; ti�1;0; ti; : : : ; tq�1�:

Definition 7.5. If � 2 4q�X� for q > 0 we define @� 2 Sq�1�X� by

@� �
qX
i�0

��1�i� � F iq:

We extend this to a homomorphism @ : Sq�X� ! Sq�1�X� called the boundary map. If c 2 S0�X� we define
@c � 0.

Lecture 15. Thursday 18th September

Proposition 7.6. @@ � 0

Lemma 7.7. For j < i we have F iqF
j
q�1 � F

j
qF i�1
q�1.

Definition 7.8. If q > 0 we define

Zq � ker�@ : Sq�X�! Sq�1�X�� � Sq�X�; and Bq � im�@ : Sq�1�X�! Sq�X�� � Sq�X�:
We also let B0 � im�@ : S1�X� ! S0�X�� � S0�X� and Z0 � S0�X�. Call the elements of Zq�X� cycles and the
elements of Bq�X� boundaries. For each q � 0 we define

Hq�X� � Zq=Bq
the qth homology group of X.

Example 7.1. Let X be a single point then

Hq�X� �
(

Z q = 0

0 q > 0

Proposition 7.9. Let the topological space X have path components X1; : : : ; Xr then for all q � 0 we have

Hq�X� ’ Hq�X1�� � � � �Hq�Xr �:
Proposition 7.10. Let the topological space X have path components X1; : : : ; Xr then H0�X� ’ Zr .

Lecture 16. Thursday 9th October

If G is a group we define the commutator subgroup of G to be the subgroup �G;G� generated by

fghg�1h�1 j g;h 2 Gg:
We have that �G;G� is a normal subgroup and that G=�G;G� is abelian. In fact if N is a normal subgroup of
G with G=N abelian then �G;G� � N .

Proposition 7.11 (Not proved).
H1�X� � �1�X�=��1�X�;�1�X��

Structure of Hp�X�. For most spaces you are likely to meet Hp�X� is finitely generated. The structure theory
of finitely generated abelian groups is as follows. If A is a finitely generated abelian group we define the
torsion subgroup of A by

Tor�A� � fa 2 A j 9n s.t. an � 0g:
Then there is a unique r such that

A ’ Tor�A�� Zr

and d1; : : : ; dn such that
Tor�A� ’ Zd1 � Zdn :

The unique number r is called the rank of A.
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Definition 7.12. If X is a topological space with finitely generated homology groups then the rank of Hq�X�
is called the q-th Betti number of X denoted �q�X�.

Definition 7.13. If X is a topological space with a finite number of non-zero homology groups all of which
are finitely generated then the Euler characteristic of X is

��X� �
X
q
�qs�X�:

Note 7.1. If we replace Z by R in the definition of homology then we get Hq�X;R� which are vector spaces. If
the homology is finitely generated then Hq�X;R� � R�q�X�.

7.2. Some homological algebra.

Definition 7.14. A chain complex G� � fGp; @pg of abelian groups is a collection of abelian groups and homo-
morphims between them

� � � @p�1! Gp
@p! Gp�1

@p�1! �� � @2! G1
@1! G0

such that @p�1 � @p � 0 for p > 1.

Definition 7.15. If G� � fGp; @pg is a chain complex we define its homology groups by

Hp�G�� �
ker @p : Gp ! Gp�1

im @p�1 : Gp�1 ! Gp
for p � 1 and

H0�G�� �
G0

im @1 : G1 ! G0
:

Definition 7.16. If G� � fGp; @pg and K� � fKp; @pg are chain complexes a morphism f� : G� ! K� is a family
of maps fp : Gp ! Kp for p � 0;1;2; : : : such that fp�1@p � @pfp for all p � 1;2; : : : .

Note 7.2. Chain complexes and their morphisms form a category ChComp

Definition 7.17. Let H� � fH0;H1;H2; : : : g and L� � fL0; L1; L2; : : : g be two sequences of abelian groups. A
morphism fromH� to L� is a sequence of maps f� � ff0; f1; f2; : : : g such that each fp : Hp ! Lp is a morphism
of abelian groups.

Note 7.3. Sequences of abelian groups and their morphisms define a category SAbGrp.

Note 7.4. A chain map f� : G� ! K� induces a morphism H��f�� of the sequences of abelian groups H��G��
and H��K�� and hence a functor H : ChComp! SAbGrp.

Note 7.5. Singular homology of topological spaces is the composition of two functors:

Top
S! ChComp

H! SAbGrp
X , S� � fSp�X�; @pg , fHp�X�g

Many of the differences between homology and homotopy come from the properties of the functor H the
study of which is called homological algebra.

Lecture 17. Monday 13th October

7.3. Functorial properties of S.

Definition 7.18. If f : X ! Y is a continuous function and � 2 4q�X� then f �� 2 4q�Y�. Extending this to
a homomorphism defines Sq�f � : Sq�X�! Sq�Y� by Sq�f ��

P
� n��� �

P
� n� �� � f�.

Lemma 7.19. If f : X ! Y is a continuous function then for all q � 0:

a) Sq�f � is a chain map, i.e @Sq�1�f � � Sq�f �@
b) Sq�idX� � idSq�X�
c) Sq�f � g� � Sq�f � � Sq�g�.

Note 7.6. This shows that X , Sq�X� and f , Sq�f � defines a functor S : Top! ChComp.
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Definition 7.20. If f : X ! Y is a continuous function we defineHq�f � : Hq�X�! Hq�Y� byHq�f � � Hq�S��f ��
so that

Hq�f ���c�� � �Sq�f ��c��
for all �c� 2 Hq�X�.
Lemma 7.21. Denote by �q 2 Sq�4q� the identity map id4q : 4q ! 4q considered as a q-simplex. Then if
� : 4q ! X we have Sq�����q� � � 2 Sq�X�.

8. The homotopy invariance theorem

Theorem 8.1. If f ; g : X ! Y are homotopic then

Hq�f � � Hq�g� : Hq�X�! Hq�Y�
for all q � 0.

Lecture 18. Thursday 16th October

Lecture 19. Monday 20th October

Proposition 8.2. If X and Y are homotopy equivalent spaces then Hq�X� ’ Hq�Y� for all q � 0.

Corollary 8.3. If X is contractible then

Hq�X� �
(

Z q � 0

0 q > 0

Definition 8.4. Let f� and g� be chain maps between chain complexes G� and K�. We say that f and g are
homotopic if for every q � 0 there is a homomorphism Pq : Gq ! Kq�1 such that

Pq�1@ � @Pq � fq � gq
for all q � 0. We call such a sequence of maps P� a homotopy from f� to g�.

Proposition 8.5. If f� and g� are homotopic chain maps between chain complexes G� and K� then Hq�f�� �
Hq�g�� for all q � 0.

Proposition 8.6. If f and g are homotopic maps from X to Y then S��f � and S��g� are homotopic chain maps.

9. The Mayer-Vietoris sequence

Definition 9.1. A sequence of abelian groups and homomorphism

� � � fi�2! Ai�1
fi�1! Ai

fi! Ai�1
fi�1! �� �

is called exact at Ai if kerfi � imfi�1. It is called exact if it is exact at all Ai.

Note 9.1. If A is an abelian group and 0 denotes the zero group then there is only one homomorphism 0! A
and only one homomorphism A! 0.

Definition 9.2. A short exact sequence of abelian groups is an exact sequence of the form

0! A! B ! C ! 0:

Proposition 9.3. If A and B are abelian groups then

(a) 0! A f! B is exact if and only if f is injective.

(b) A
f! B ! 0 is exact if and only if f is surjective.

(c) 0! A f! B ! 0 is exact if and only if f is bijective.
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Lecture 20. Thursday 23rd October

Lemma 9.4 (The five lemma). Let

A
f1----------------------------------------------------------------------------------------------------------------------------! B

f2----------------------------------------------------------------------------------------------------------------------------! C
f3----------------------------------------------------------------------------------------------------------------------------! D

f4----------------------------------------------------------------------------------------------------------------------------! E

�
??y �

??y 
??y �

??y �
??y

A0 ----------------------------------------------------------------------------------------------------------------------------!
g1

B0 ----------------------------------------------------------------------------------------------------------------------------!
g2

C0 ----------------------------------------------------------------------------------------------------------------------------!
g3

D0 ----------------------------------------------------------------------------------------------------------------------------!
g4

E0

be a commutative diagram of abelian groups and homomorphism where both the horizontal rows are exact. If
�, �, � and � are isomorphisms then so also is .

Definition 9.5. Let U � fU�g�2I be an open cover of a topological space X. We say a q-simplex is U-small
if the image of � is contained in some element of U. Denote by 4Uq �X� � 4q�X� the set of all U-small
q-simplices and by SUq �X� � Sq�X� the subgroup of chains formed from U small q-simplices.

Note 9.2. SU� �X� is a subcomplex of S��X� and hence we can form its homology denoted HUq �X�. The chain
map SU� �X� � S��X� induces a map HUq �X�! Hq�X� for all q � 0.

Proposition 9.6 (Not proved). HUq �X�! Hq�X� is an isomorphism for all q � 0.

Let X � U [ V where U and V are open sets and let U � fU;Vg. Define � : Sq�U \ V� ! Sq�U�� Sq�V� by
��a� � �a;�a� and define � : Sq�U�� Sq�V�! SUq �M� by ��c;d� � c � d. Then we have

Proposition 9.7. The homomorphisms � and � are chain maps and

0! Sq�U \ V� �! Sq�U�� Sq�V�
�! SUq �M�! 0

is a short exact sequence for all q � 0.

Lecture 22. Monday 27th October

Proposition 9.8. Let

0! Aq �! Bq
�! Cq ! 0

be a short exact sequence of chain maps for all q � 0. Then for every q � 1 there is a homomorphism (called
the connecting homomorphism) � : Hq�C��! Hq�1�A�� such that

� � � �
-! H1�A��

H1���-! H1�B��
H1���-! H1�C��

�
-! H0�A��

H0���-! H0�B��
H0���-! H0�C�� -! 0

is an exact sequence (called the long exact homology sequence).

Proposition 9.9. Let X � U [ V where U and V are open sets then there is an exact sequence

� � � �
-! H1�U [ V�

H1���-! H1�U��H1�V�
H1���-! H1�M�

�
-! H0�U [ V�

H0���-! H1�U��H0�V�
H0���-! H0�M� -! 0

(called the Mayer-Vietoris sequence for U and V ).

9.1. Homology of spheres.

Proposition 9.10.

Hq�S1� �

8>><>>:
Z q � 0

Z q � 1

0 otherwise

Proposition 9.11.

Hq�Sn� �

8>><>>:
Z q � 0

Z q � n
0 otherwise

Lecture 23. Thursday 30th October

Concluding remarks and review.


