Algebraic Topology IV - MOCK EXAM

- 1. Answer all questions true or false. Give a short justification of each answer: this might just be 'result proved in lectures'.
 - (i) Every topological space has a metric giving rise to the topology.
 - (ii) $\mathcal{T} = \{\emptyset, \{a, b\}, \{b, c\}, X\}$ is a topology on the set $X = \{a, b, c\}$.
 - (iii) If X has the discrete topology and $f: X \to \mathbb{R}^{17}$ then f is continuous.
 - (iv) The open sets in a metric space form a topology.
 - (v) $\pi_1(\mathbb{R}^2 \{0\}) = \mathbb{Z}.$
 - (vi) If x and y are points in a topological space X then $\pi_1(X, x)$ is isomorphic to $\pi_1(X, y)$.
 - (vii) $S^1 \times S^1 \times S^1$ is homotopy equivalent to S^3 .
 - (viii) The sphere S^{123} is contractible.
 - (ix) A contractible space is simply-connected.
 - (x) There exists a topological space X with $H_{55}(X) = \mathbb{Z}$.
- 2. (a) (i) Define what a category is.
 - (ii) Define what a groupoid is.
 - (iii) If \mathcal{G} is a groupoid and $\operatorname{Mor}_{\mathcal{G}}(X, Y) \neq \emptyset$ show that $\operatorname{Mor}_{\mathcal{G}}(X, X)$ and $\operatorname{Mor}_{\mathcal{G}}(Y, Y)$ are isomorphic groups. (You may assume known that in a groupoid $\operatorname{Mor}_{\mathcal{G}}(X, X)$ is a group.)
 - (b) (i) Define what it means for \mathcal{T} to be a topology on a set X.
 - (ii) Let X be a set and define \mathcal{T} to be the set of all subsets $U \subseteq X$ which satisfy either $U = \emptyset$ or X U is a finite set of points (remember that 0 is a finite number). Show that \mathcal{T} is a topology on X.
- 3. (a) Let X be a topological space.
 - (i) If f and g are paths from x to y define what it means for f and g to be path homotopic.
 - (ii) Show that path homotopy is an equivalence relation on paths from x to y.
 - (iii) Let e_x be the constant path $e_x(t) = x$. If f is a path from x to y show that $e_x \star f$ is path homotopic to f.
 - (b) Prove the Brouwer fixed point theorem that states that any continuous function $f: D \to D$ has a fixed point when $D = \{x \in \mathbb{R}^2 \mid ||x|| \leq 1\}$. You may assume that $\pi_1(S^1) \neq 0$.

Please turn over for page 2

Algebraic Topology IV - MOCK EXAM

- 4. (a) (i) Define what it means for a continuous function $p: E \to B$ to be a covering map.
 - (ii) State the path lifting property and the covering homotopy property for a covering map $p: E \to B$.
 - (iii) Let $p: \mathbb{R} \to S^1$ be the map $p(t) = (\cos(t), \sin(t))$. Assuming that this is a covering map calculate $\pi_1(S^1)$. State carefully any results you use from lectures.
 - (iv) What can you conclude about $H_1(S^1)$?
 - (b) (i) Define what it means for a sequence of abelian groups and homomorphisms

$$0 \to G \xrightarrow{\alpha} H \xrightarrow{\beta} K \to 0$$

to be a short exact sequence of abelian groups.

(ii) Consider a commutative diagram of abelian groups

where both the horizontal rows are short exact sequences. If α and γ are isomorphisms show that γ is an isomorphism. (Don't just quote the Five Lemma.)

- 5. (a) Define carefully the *p*th homology group $H_p(X)$ of a topological space X. Include a definition of the boundary map.
 - (b) If $f, g: X \to Y$ are homotopic continuous functions between topological spaces what can we conclude about $H_p(f), H_p(g): H_p(X) \to H_p(Y)$? (Don't prove this result.)
 - (c) Using the result from (b) show that $H_p(\mathbb{R}^n) = 0$ except when p = 0 when it equals \mathbb{Z} .
 - (d) Consider a topological space X which is a union of two open sets U and V. Define the Mayer-Vietoris long exact sequence in homology and explain what all the maps are.
 - (e) Using the Mayer-Vietoris sequence calculate the homology of the two-sphere S^2 .