Algebraic Topology IV 2008

Assignment 2 - Due Thursday 25th September

1. Consider the tangent bundle to the circle $T S^{1}$ which is defined as

$$
T S^{1}=\left\{(u, v) \mid\|u\|^{2}=1, \quad\langle u, v\rangle=0\right\} \subset \mathbb{R}^{2} \times \mathbb{R}^{2} .
$$

Show that the inclusion $\iota: S^{1} \rightarrow T S^{1}$ defined by $\iota(u)=(u, 0)$ is a homotopy equivalence and calculate the fundamental group of $T S^{1}$. (You may assume known the fundamental group of the circle S^{1}.)
2. Prove that S^{n} is path connected for $n>0$.
3. Is $S^{1} \times S^{2}$ homotopy equivalent to S^{3} ? Give reasons.
4. Calculate $\pi_{1}\left(S^{1} \times S^{5} \times \mathbb{R}^{437}\right)$.
5. Let $m<n$ and define an m-dimensional plane $W_{m} \subset \mathbb{R}^{n}$ by

$$
W_{m}=\left\{\left(x^{1}, \ldots, x^{m}, 0,0, \ldots, 0\right) \mid\left(x^{1}, \ldots, x^{m}\right) \in \mathbb{R}^{m}\right\} .
$$

Calculate the fundamental group of $\mathbb{R}^{n}-W_{m}=\left\{x \in \mathbb{R}^{n} \mid x \notin W\right\}$. State clearly any results that you use.
6. Define real projective space, $\mathbb{R} P_{k}$, to be the set of all lines through the origin in \mathbb{R}^{k+1}. Define a map $p: S^{k} \rightarrow \mathbb{R} P_{k}$ from the sphere to real projective space by mapping a unit vector to the line containing it. Assuming that p is a covering map calculate $\pi_{1}\left(\mathbb{R} P_{k}\right)$.

