Algebraic Topology IV 2008

Assignment 1 - Due Thursday 11th September

1. Consider the categories Set and Vec of all sets and all vectors spaces respectively. Define a function F on objects by $F(X)=\operatorname{Map}(X, \mathbb{R})$. Find an action of F on maps of sets $f: X \rightarrow Y$ making it a functor. Is this a contravariant or covariant functor ?
2. Let $X=\left(\mathbb{Z}_{2}\right)^{r}$ where $\mathbb{Z}_{2}=\{0,1\}$. Define $d: X \times X \rightarrow \mathbb{R}$ by letting $d(x, y)$ be the number of places at which the binary string $x=\left(x_{1}, \ldots, x_{r}\right)$ differs from the binary string $y=\left(y_{1}, \ldots, y_{r}\right)$. Show that d is a metric.

This metric is called the Hamming distance and is used in coding theory. The idea is that if a binary string x is transmitted down a noisy channel it will be corrupted by having some 0 's and 1's randomly become 1's and 0's. If there is only a small amount of noise the received string should be close to the transmitted string relative to the Hamming distance and this idea can be used to construct error-correcting codes.
3. Let X be a set and $\mathcal{B} \subseteq \mathcal{P}(X)$. We say that \mathcal{B} is a basis for a topology on X if:
(a) for all $x \in X$ there exists $B \in \mathcal{B}$ with $x \in B$.
(b) If $x \in B_{1} \cap B_{2}$ for $B_{1}, B_{2} \in \mathcal{B}$ then there exists $B_{3} \in \mathcal{B}$ with $x \in B_{3} \subseteq B_{1} \cap B_{2}$.

Show that the set of all open balls in a metric space X is a basis for a topology on X. If B is a basis for a topology on X we define $\mathcal{T}_{\mathcal{B}} \subseteq \mathcal{P}(X)$ by saying that $U \in \mathcal{T}_{\mathcal{B}}$ if for all $x \in U$ there is a $B \in \mathcal{B}$ with $x \in B \subseteq U$. Show that $\mathcal{T}_{\mathcal{B}}$ is a topology on X. We call $\mathcal{T}_{\mathcal{B}}$ the topology generated by \mathcal{B}.
4. If f and g are path-homotopic paths in a topological space X show that f^{-1} and g^{-1} are path-homotopic.
5. Let X be a topological space containing points x, y, z and w. Let α be a path from x to y, β a path from y to z and γ a path from z to w. Choose numbers $0<a<b<1$. Define a path $\alpha \star \beta \star \gamma$ from x to w by

$$
\alpha \star \beta \star \gamma= \begin{cases}\alpha(t / a) & 0 \leq t \leq a \\ \beta((t-a) /(b-a)) & a \leq t \leq b \\ \gamma((t-b) /(1-b)) & b \leq t \leq 1\end{cases}
$$

Show that $\alpha \star \beta \star \gamma$ is a continuous path from x to w. Show that the homotopy class of $\alpha \star \beta \star \gamma$ is independent of a and b.
6. If X and Y are topological spaces we denote by $[X, Y]$ the set of all homotopy classes of continuous maps from X to Y. Denote also the unit interval $[0,1]$ by I.
(a) Show that for any topological space X the set $[X, I]$ has only one element.
(b) Show that for any path-connected, topological space Y the set $[I, Y]$ has only one element.

Come and ask if you want a hint.

