SUMMARY OF ALGEBRAIC TOPOLOGY 2006

Note: This is as summary of the course as I expect it to look as of 2006/7/24 if we don't do de Rham cohomology. It will no doubt change along the way in which case I will hand out an updated summary.

1. INTRODUCTION.

Discussion of what algebraic topology is good for.

2. CATEGORIES, GROUPOIDS AND FUNCTORS

Definition 2.1. A *category C* consists of a pair of sets Mor(C) and Ob(C) with two maps $s, t: Mor(C) \rightarrow Ob(C)$ called *source* and *target* satisfying the following requirements:

If $X, Y \in Ob(C)$ denote by Mor(X, Y) the set of all morphisms f with s(f) = X and t(f) = Y. Then we have a *composition*

$$Mor(X, Y) \times Mor(Y, Z) \to Mor(X, Z)$$
$$(f, g) \mapsto g \circ f$$

which satisfies an *associativity* condition $(f \circ g) \circ h = f \circ (g \circ h)$ whenever the compositions are defined. Moreover for every $X \in Ob(C)$ there is an *identity* morphism 1_X which satisfies $1_Y \circ f = f \circ 1_X = f$ for every $f \in Mor(X, Y)$ and every $X, Y \in Ob(C)$.

Definition 2.2. If *C* is a category a morphism $f \in Mor(X, Y)$ is called *invertible* if there exists $g \in Mor(Y, X)$ such that $g \circ f = 1_X$ and $f \circ g = 1_Y$.

Note 2.1. As with groups we can show that if a morphism f is invertible then the corresponding morphism g is unique. We call it the *inverse* (f^{-1}) of f.

Definition 2.3. A category in which all morphisms are invertible is called a *groupoid*.

Proposition 2.4. Let C be a groupoid. Then

- (1) For any object X, Mor(X, X) is a group.
- (2) For any morphism $f \in Mor(X, Y)$ the function

$$\iota_f \colon \operatorname{Mor}(X, X) \to \operatorname{Mor}(Y, Y)$$

defined by $\iota_f(g) = fgf^{-1}$ is an isomorphism of groups.

Definition 2.5. A groupoid is called *transitive* if $Mor(X, Y) \neq \emptyset$ for all objects X and Y.

Corollary 2.6. For a transistive groupoid the groups Mor(X, X) are all isomorphic.

Definition 2.7. A *functor F* between two categories *C* and *D* is a pair of functions $F: Mor(C) \rightarrow Mor(D)$ and $F: Ob(C) \rightarrow Ob(D)$ such that:

- (1) $F(Mor(X, Y)) \subset Mor(F(X), F(Y))$ for all $X, Y \in Ob(C)$.
- (2) $F(1_X) = 1_{F(X)}$ for all $X \in Ob(C)$.

(3) If $f \in Mor(X, Y)$ and $g \in Mor(Y, Z)$ then $F(g \circ f) = F(g) \circ F(f)$ for all $X, Y \in Ob(C)$.

Note 2.2. Sometimes we have all the conditions of a functor except that $F(g \circ f) = F(f) \circ F(g)$. In this case we call it a *contravariant* functor and make the distinction by calling the case above a *covariant* functor.

Lemma 2.8. Let $F: C \to D$ be a functor. If $f \in Mor(X, Y)$ is a morphism in C which is invertible then F(f) is invertible.

3. TOPOLOGY

3.1. Metric Spaces.

Definition 3.1. Let *X* be a set. Then a map $d: X \times X \to \mathbb{R}$ is called a *metric* on *X* if it satisfies:

- (1) $d(x, y) \ge 0$ for all $x, y \in X$ and d(x, y) = 0 if and only if x = y.
- (2) d(x, y) = d(y, x) for all $x, y \in X$.
- (3) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

Note 3.1. If *d* is a metric on *X* the pair (X, d) is called a metric space.

Proposition 3.2. Let X be any set and define

$$d(x, y) = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases}$$

Then *d* is a metric. This metric is called the discrete metric on *X*.

Proposition 3.3. Let (X, d) be a metric space and $Y \subset X$. Define $d_Y \colon Y \times Y \to \mathbb{R}$ by restricting $d \colon X \times X \to \mathbb{R}$ to $Y \times Y \subset X \times X$. Then d_Y is a metric on Y. This metric is called the subspace metric on Y.

Definition 3.4. If (*X*, *d*) is a metric space and $x \in X$ and $\delta > 0$ then we call

$$B(X,\delta) = \{ \gamma \mid d(x,\gamma) < \delta \}$$

the open ball around *x* of radius δ .

Definition 3.5. Let (X, d) be a metric space. We call a subset $U \subset X$ *open* if for all $x \in U$ there is a $\delta > 0$ such that $x \in B(x, \delta) \subset U$.

Definition 3.6. Let (X, d) be a metric space and let \mathcal{T}_d be the collection of all open subsets of *X*. Then:

- (1) $\emptyset, X \in \mathcal{T}_d$.
- (2) If U_1 and U_2 are in \mathcal{T}_d then $U_1 \cap U_2 \in \mathcal{T}_d$.
- (3) If U_{α} is in \mathcal{T}_d for all $\alpha \in I$ then $\cup_{\alpha \in I} U_{\alpha}$ is in \mathcal{T}_d .

3.2. Topological Spaces.

Definition 3.7. Let *X* be a set and $\mathcal{T} \subset \mathcal{P}(X)$ be a collection of subsets of *X*. We say that \mathcal{T} is a *topology* on *X* if it satisfies:

- (1) $\emptyset, X \in \mathcal{T}$.
- (2) If U_1 and U_2 are in \mathcal{T} then $U_1 \cap U_2 \in \mathcal{T}$.
- (3) If U_{α} is in \mathcal{T} for all $\alpha \in I$ then $\cup_{\alpha \in I} U_{\alpha}$ is in \mathcal{T} .

Note 3.2. If \mathcal{T} is a topology we call the pair (X, \mathcal{T}) a *topological space* and the elements of \mathcal{T} *open* subsets of *X*.

Definition 3.8. If *X* is a set then $\mathcal{T} = \mathcal{P}(X)$ is called the *discrete* topology on *X*.

Definition 3.9. If *X* is a set then $\mathcal{T} = \{\emptyset, X\}$ is called the *trivial* topology.

Proposition 3.10. Let (X, d) be a metric space and let T_d be the set of all open subsets. Then T_d is a topology on *X*.

Note 3.3. If (*X*, *d*) is a metric space we call the topology \mathcal{T}_d the *metric* topology on *X*.

Definition 3.11. If (X, \mathcal{T}) is a topological space and there exists a metric d on X such that $\mathcal{T} = \mathcal{T}_d$ then we say that (X, \mathcal{T}) is *metrizable*.

Definition 3.12. We say a topological space *X* is Hausdorff if for all $x \neq y \in X$ there exist open sets *U* and *V* with $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Proposition 3.13. *Metric spaces are Hausdorff.*

Corollary 3.14. Not all topological spaces are metrizable.

Definition 3.15. If (X, \mathcal{T}) is a topological space and $C \subset X$ we say that *C* is closed if X - C is open.

Proposition 3.16. Let (X, \mathcal{T}) be a topological space. Then:

(1) \oslash and X are closed,

- (2) *if* C_1 *and* C_2 *are closed then* $C_1 \cup C_2$ *is closed, and*
- (3) *if* C_{α} *is closed for all* $\alpha \in I$ *then* $\cap_{\alpha \in I} C_{\alpha}$ *is closed.*

Proposition 3.17. *Let* (X, \mathcal{T}) *be a topological space and* $Y \subset X$ *. Define*

$$\mathcal{T}_Y = \{ U \cap Y \mid U \in \mathcal{T} \}$$

then \mathcal{T}_Y is a topology on Y. This topology is called the subspace topology on Y.

Proposition 3.18. Let (X, d) be a metric space and $Y \subset X$. Then the metric topology \mathcal{T}_{d_Y} on Y determined by the subspace metric coincides with the subspace topology on Y determined by the metric topology on X.

Proposition 3.19. Let (X_1, \mathcal{T}_1) and (X_3, \mathcal{T}_2) be topological spaces and let $X = X_1 \times X_2$. Define $\mathcal{T} \subset \mathcal{P}(X)$ by requiring that $U \in \mathcal{T}$ if for all $(x_1, x_2) \in U$ there exists U_1 open in X_1 and U_2 open in X_2 with

$$(x_1, x_2) \in U_1 \times U_2 \subset U_1$$

Then \mathcal{T} is a topology on X. This topology is called the product topology on $X_1 \times X_2$.

3.3. Continuous functions.

Definition 3.20. Let *X* and *Y* be topological spaces. We say that $f: X \to Y$ is continuous if for every open subset *U* of *Y* we have $f^{-1}(U) \subset X$ open.

Definition 3.21. Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \to Y$. We say that f is continuous if for all $x \in X$ and for all $\epsilon > 0$ there is a $\delta > 0$ such that $f(B(x, \delta)) \subset B(y, \epsilon)$.

Proposition 3.22. Let $f: X \to Y$ be a function between metric spaces. Then f is continuous as a function between metric spaces if and only if it is continuous as a function between topological spaces with the metric topologies.

Proposition 3.23. Let $f: X \to Y$ be a map between topological spaces. Then f is continuous if and only if for all closed subsets $C \subset Y$ we have $f^{-1}(C) \subset X$ closed.

Proposition 3.24. Let *X*, *Y* and *Z* be topological spaces and assume $f: X \to Y$ and $g: Y \to Z$ are continuous. Then $g \circ f: X \to Z$ is continuous.

Proposition 3.25. Let X and Y be topological spaces. If $z \in X$ then the following are continuous:

(1) $\pi_X: X \times Y \to X$ defined by $\pi_X(x, y) = x$ (2) $\iota_z: Y \to X \times Y$ defined by $\iota_z(y) = (z, y)$.

Corollary 3.26. If $f: X \times Y \to Z$ is continuous and $x \in X$ then $f_x: Y \to Z$ defined by $f_x(y) = f(x, y)$ is continuous.

Proposition 3.27. Let $f: X \to Y_1 \times Y_2$ be defined by $f(x) = (f_1(x), f_2(x))$ where $f_1: X \to Y_1$ and $f_2: X \to Y_2$. Then f continuous if and only if f_1 and f_2 are continuous.

Lemma 3.28 (Pasting Lemma). Let $X = C \cap D$ where C and D are closed in X. Let $f: C \to Y$ and $g: D \to Y$ be continuous maps into a space Y such that f(x) = g(x) for all $x \in C \cap D$. Then $h: X \to Y$ defined by

$$h(x) = \begin{cases} f(x) & x \in C \\ g(x) & x \in D \end{cases}$$

is a continuous map.

4. Homotopy theory

4.1. Homotopy.

Definition 4.1. Let $f, g: X \to Y$ be two continuous functions between topological spaces. We say that f is *homotopic* to g if there exists a continuous function

 $H: [0,1] \times X \to Y$

satisfying H(0, x) = f(x) and H(1, x) = g(x) for all $x \in X$.

Note 4.1. We denote by $H_s: X \to Y$ the function $H_s(x) = H(s, x)$. Note that each H_s is continuous and that $H_0 = f$ and $H_1 = g$.

Note 4.2. If *f* is homotopic to *g* we write $f \simeq g$

Proposition 4.2. *Homotopy is an equivalence relation on continuous functions from X to Y.*

4.2. Path homotopy.

Definition 4.3. Let *X* be a topological space and *x* and *y* be points in *X*. Then a path in *X* from *x* to *y* is a continuous map $y: [0,1] \rightarrow X$ such that y(0) = x and y(1) = y.

Note 4.3. If x = y then we call the path a *loop* in *X* at *x*.

Definition 4.4. Two paths γ , γ' are called path homotopic if we have a continuous map $H: [0, 1] \times [0, 1] \rightarrow X$ such that, if we define $F_s(t) = F(s, t)$, then each $F_s: [0, 1] \rightarrow X$ is a path from x to γ and $F_0 = \gamma$ and $F_1 = \gamma'$.

Proposition 4.5. *Path homotopy is an equivalence relation on the set of all paths from x to y.*

Note 4.4. We denote the equivalence class of a path, or loop γ by $[\gamma]$.

Note 4.5. Notice that if we have a homotopy between two loops at x then each F_s is also a loop at x for every s. The set of all equivalence classes of loops at x is denoted $\pi_1(X, x)$ and called the *fundamental group* of X (at x).

Definition 4.6. If α and β are paths in *X* we call them *composable* if $\alpha(1) = \beta(0)$.

Given γ and β composable paths consider the function from [0, 1] to *X* defined by

$$\alpha \star \beta(t) = \begin{cases} \alpha(2t) & 0 \le t \le 1/2\\ \beta(2t-1) & 1/2 \le t \le 1. \end{cases}$$

By the Pasting Lemma this is a path from $\alpha(0)$ to $\beta(1)$ called the *product* of α and β . We call $\alpha \star \beta$ the *path product* of α and β .

Lemma 4.7. If α and β are as above and α is homotopic to α' and β to β' then $\alpha \star \beta$ is homotopic to $\alpha' \star \beta'$.

This lemma shows that there is a well-defined product of homotopy classes of paths and loops defined by $[\alpha][\beta] = [\alpha \star \beta]$. Denote by $\Pi(X)$ the set of all paths in *X* and define *s*, *t*: $\Pi(X) \to X$ by $s([\gamma]) = \gamma(0)$ and $t([\gamma]) = \gamma(1)$.

Proposition 4.8. The pair $\Pi(X)$ and X define the morphisms and objects of a groupoid with the path product. The inverse of $[\gamma]$ is $[\gamma-1]$ where $\gamma^{-1}(t) = \gamma(1-t)$. The identity at $x \in X$ is the equivalence class of the constant path $e_x(t) = x$.

This groupoid is called the homotopy groupoid of X and denoted $\Pi(X)$ *.*

Definition 4.9. We say that a topological space *X* is path-connected if for any $x, y \in X$ there is a path from *x* to *y*.

Proposition 4.10. *The relation 'there is a path joining x to y' is an equivalence relation on any topological space.*

Note 4.6. The equivalence classes under this relation are called the *path-components* of *X*.

Proposition 4.11. A topological space X is path-connected if and only if the homotopy groupoid is transitive.

Note 4.7. The group of all morphisms beginning and ending at x in $\Pi(X)$ is denoted $\pi_1(X, x)$ and called the *fundamental group* of X. It is the set of all path-homotopy classes of loops as x with the path product.

We can apply the results from groupoids as follows: If α is a path from x to y and y is a loop at x then we can define a loop at y by $(\alpha^{-1}y)\alpha$ where $\alpha^{-1}(t) = \alpha(1 - t)$. We define a map

$$I_{[\alpha]}$$
: $\pi_1(X, x) \rightarrow \pi_1(X, y)$

by $I_{[\alpha]}([\gamma]) = [(\alpha^{-1}\gamma)\alpha] = [\alpha^{-1}(\gamma\alpha)]$. and it follows as before that:

Proposition 4.12. The map $I_{\lceil \alpha \rceil}$ is a group isomorphism and $(I_{\lceil \alpha \rceil})^{-1} = I_{\lceil \alpha^{-1} \rceil}$.

Note 4.8. Because of this proposition we often drop the reference to the point *x* for a path connected space *X* and just refer to the fundamental group $\pi_1(X)$ of *X*.

4.3. Contractible maps.

Definition 4.13. If the identity map on *X* is homotopic to a constant map then we call *X* contractible.

Example 4.1. If $X = Y = \mathbb{R}^n$ then the identity map is constractible to the constant map to zero by F(s, x) = sx.

Example 4.2. Let *X* be a star shaped region in \mathbb{R}^n , that is a region $X \subset \mathbb{R}^n$ with a point $x \in X$ with the property that that for every other point $y \in X$ the line segment from *X* to *y* is also in *X*. Then *X* is contractible.

Definition 4.14. A topological space is called *simply connected* if it is path connected and its fundamental group is zero.

Proposition 4.15. A contractible space is simply-connected.

Note 4.9. The converse is not true. We shall see later that $\pi_1(S^2) = 0$ and S^2 is certainly path-connected but it is not contractible.

If $f: X \to Y$ is a continous map then we can define a map $\pi_1(f) = f_*$ from $\pi_1(X, x)$ to $\pi_1(Y, f(x))$ as follows. Let γ be a loop at x then $f \circ \gamma$ is a loop at f(x). It is easy to check that if γ is homotopic to γ' then $f \circ \gamma$ is homotopic to $f \circ \gamma'$ and so we can define $f_*([\gamma]) = [f \circ \gamma]$. It is also easy to check that f_* is a group homomorphism.

Let *f* and *g* be homotopic continuous maps from a space *X* to a space *Y*. Let *F*: $[0,1] \times X \to Y$ be a homotopy. Then we have $f_*: \pi_1(X, x) \to \pi_1(Y, f(x))$ and $g_*: \pi_1(X, x) \to \pi_1(Y, g(x))$. Define $\alpha(t) = F(t, x)$, then α is a path from f(x) to g(x). Recall the definition of $I_{[\alpha]}: \pi_1(Y, f(x)) \to \pi_1(Y, g(x))$ from above. Then we have

Proposition 4.16. With the notation as in the preceeding discussion we have

$$I_{[\alpha]} \circ f_* = g_*.$$

Definition 4.17. A map $f: X \to Y$ is called a *homotopy equivalence* if there is a map $g: Y \to X$ such that $f \circ g$ is homotopic to id_Y and $g \circ f$ is homotopic to id_X .

Definition 4.18. Two spaces are called *homotopy equivalent* if there is a homotopy equivalence between them.

Corollary 4.19. If two space are homotopy equivalent then they have isomorphic fundamental groups.

Example 4.3. A contractible space is homotopic to a point, that is to a space with only one element.

Example 4.4. The space $\mathbb{R}^2 - \{0\}$ is homotopy equivalent to S^1 .

4.4. The fundamental group of the circle. We define a continuous map $p: \mathbb{R} \to S^1$ by $p(x) = (\cos(x), \sin(x))$. It follows from elementary calculus that we can cover S^1 by open sets U_i such that there are continuous maps $s_i: U_i \to \mathbb{R}$ such that $p(s_i(y)) = y$ for all $y \in S^1$. We have two important results.

Proposition 4.20 (Path lifting property.). Let $y \in S^1$ and $x \in \mathbb{R}$ with p(x) = y. Let y be a loop at x then there is a unique continuous map $\hat{y}: [0,1] \to \mathbb{R}$ such that $p \circ \hat{y} = y$ and $\hat{y}(0) = x$.

Note 4.10. We call \hat{y} a lift of y or we say that it covers y.

Proposition 4.21 (Covering homotopy property.). Let $y \in S^1$ and $x \in \mathbb{R}$ with p(x) = y. Let y and \mathbb{R} ho be loops at x and $F: [0,1] \times [0,1] \to S^1$ be a homotopy from y to \mathbb{R} ho. Let \hat{y} be a lift of y with y(0) = x. Then there is a unique lift of F to a map $\hat{F}: [0,1] \times [0,1] \to \mathbb{R}$ such that $p \circ \hat{F} = F$ and $F(0,t) = \hat{y}(t)$ for all t.

It follows that if y is a loop in S^1 then $(1/2\pi)(\hat{y}(0) - \hat{y}(1))$ is an integer that depends only on the homotopy class of y. We have

Proposition 4.22. The map

$$[\gamma] \mapsto \frac{1}{2\pi} (\hat{\gamma}(0) - \hat{\gamma}(1))$$

defines an isomorphism between $\pi_1(S^1, x)$ and \mathbb{Z} .

Note 4.11. We call this integer the degree or winding number of γ .

Note 4.12. If the loops in question are differentiable we can construct the winding number by the integral

$$\frac{1}{2\pi}\int \frac{1}{\gamma}\frac{d\gamma}{dt}dt.$$

Corollary 4.23. *The fundamental group of* $\mathbb{R}^2 - \{0\}$ *is* \mathbb{Z} *.*

Theorem 4.24 (Brouwer fixed point theorem). *If* $f: D \to D$ *is a continous map of the disk* $D = \{x \in \mathbb{R}^2 \mid |x|^2 \le 1\}$ *to itself then* f *has a fixed point, that is there is an* $x \in D$ *with* f(x) = x.

4.5. Fundamental group of a product.

Proposition 4.25. Let $F: X \to Y \times Z$ be a function between topological spaces. Then it defines functions $f: X \to Y$ and $g: X \to Z$ by F(x) = (f(x), g(x)). Moreover any pair of functions f and g defines a function F in this manner. In such a situation F is continuous if and only if the two functions f and g are continuous.

With this result it easy to prove:

Proposition 4.26. The fundamental group of a product $X \times Y$ is isomorphic to $\pi_1(X) \times \pi_1(Y)$.

Example 4.5. The fundamental group of a torus $S^1 \times S^1$ is $\mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^2$.

4.6. **Van Kampen theorem.** If *G* and *H* are two groups we define the free product G * H to consist of all finite 'words'

$$g_1h_1g_2h_2\ldots g_kh_k$$

subject to the obvious identifications if some of the g_i or h_i are the identity. For example if e_H is the identity in H then $g_1e_Hg_2h_2 = (g_1g_2)h_2$. We define a product on G * H by juxtaposing words and simplifying if necessary. For example if we justapose gh and $e_Gh^{-1}g'$ the result would be $(gh)(e_Gh^{-1}g') = gg'$.

If $S \subset G$ is a subset of a group define $\langle S \rangle$ to be the normal subgroup generated by *S* that is the smallest normal subgroup containing *S*.

Let $X = U \cup V$ where U and V are open and $U \cap V$ is **path-connected**. Define ι_U and ι_V to be the inclusion maps from $U \cap V$ into U and V respectively. Then we have

Theorem 4.27 (Van Kampen theorem (not proved)). In the situation above the homotopy group of X is

$$\pi_1(X) = \frac{\pi_1(U) * \pi_1(V)}{\langle \{\iota_U([\gamma^{-1}])\iota_V([\gamma]) \mid [\gamma] \in \pi_1(U \cap V) \} \rangle}.$$

Corollary 4.28 (Weak Van Kampen theorem). *If* $\pi_1(U) = \pi_1(V) = 0$ *and* $U \cap V$ *is path connected then* $\pi_1(U \cup V) = 0$.

Corollary 4.29. If $X = U \cup V$ and $U \cap V$ is simply connected then $\pi_1(X) = \pi_1(U) * \pi_1(V)$.

Proposition 4.30. *The fundamental group of the n sphere for* n > 1 *is* 0.

Proposition 4.31. *The fundamental group of the plane with* r *points removed is the free group on* r *generators that is the free product of* r *copies of* \mathbb{Z} *.*

4.7. **Final thoughts about homotopy theory.** In this section I discussed some other aspects of homotopy theory that aren't for examination. I talked about the higher homotopy groups $\pi_n(X)$, and why they are abelian. Discussed suspension and how it shows that $\pi_k(S^n)$ is \mathbb{Z} if k = n and zero if 0 < k < n. Drew the Hopf fibration. Also explained the Poincare conjecture. Also talked about the fundamental group of a Riemann surface and showed how to cut it up to make a polygon.

5. Homology of geometric complexes

5.1. Geometric complexes and polyhedra.

Definition 5.1. A set of k + 1 points $a_0, ..., a_{k+1}$ in \mathbb{R}^n is called *geometrically independent* if they lie in no k - 1 dimensional hyperplane.

Definition 5.2. Let a_0, \ldots, a_k be a geometrically independent set of points in \mathbb{R}^n . The *k* dimensional geometric simplex or *k*-simplex spanned by them is

$$\langle a_0 \dots a_k \rangle = \left\{ \sum_{i=0}^k \lambda_i a_i \mid \sum_{i=0}^k \lambda_i = 1, \quad 0 \leq \lambda_i \leq 1 \right\}.$$

Note 5.1. The numbers $\lambda_0, ..., \lambda_k$ are called the *barycentric co-ordinates* of $x = \sum_{i=0}^k \lambda_i a_i$. The subset of $\langle a_0 ... a_k \rangle$ consisting of all points with positive barycentric co-ordinates is called the *open k-simplex*.

Note 5.2. The a_i are called the *vertices* of the *k*-simplex $\langle a_0 \dots a_k \rangle$.

Definition 5.3. A simplex σ_k is called a *face* of a simplex σ_n if every vertex of σ_k is a vertex of σ_n .

Definition 5.4. Two simplice σ_n and σ_m are called *properly joined* if $\sigma_n \cap \sigma_m = \emptyset$ or $\sigma_n \cap \sigma_m$ is a face of each of σ_m and σ_n .

Definition 5.5. A geometric complex (or *simplicial complex*) is a finite family *K* of geometric simplices which are properly joined and such that any face of a simplex in *K* is also in *K*.

The union of all the simplices in *K* with the subspace topology from \mathbb{R}^n is denoted |K| and called the *geometric carrier* of *K* or the polyhedron associated to *K*.

Definition 5.6. Let *X* be a topological space. If *X* is homeomorphic to |K| then *X* is called *triangulable* and *K* is called a *triangulization* of *K*.

Definition 5.7. The closure of a simplex Cl σ_k is the complex consisting of σ^k and all its faces.

Definition 5.8. If *K* is a complex the r-skeleton is the set of all simplices of dimension less than or equal to k.

5.2. Orientation of geometric complexes.

Definition 5.9. An orientation of a complex is a choice of ordering up to an even permutation.

Note 5.3. We extend the notation introduced so that $\langle a_0 \dots a_k \rangle = + \langle a_0 \dots a_k \rangle$ denotes the oriented simplex with orientation determined by the ordering $a_0 \dots a_k$ and $- \langle a_0 \dots a_k \rangle$ denotes the simplex with the opposite orientation.

Definition 5.10. A complex *K* is called oriented if each simplex in *K* is oriented.

Definition 5.11. Let *K* be an oriented complex. Let σ^{p+1} and σ^p be two simplices in *K* of dimension p + 1 and p respectively. Define $[\sigma^{p+1}, \sigma^p]$ as follows. If σ^p is not a face of σ^{p+1} then $[\sigma^{p+1}, \sigma^p] = 0$. If $\sigma^p = \langle a_0 \dots a_p \rangle$ and v is the additional vertex in σ^{p+1} then $\sigma^{p+1} = [\sigma^{p+1}, \sigma^p] \langle va_0 \dots a_p \rangle$.

Theorem 5.12. Let σ^p , σ^{p-2} be a *p* simplex and a p-2 simplex in an oriented complex *K*. Then

$$\sum_{\sigma^{p-1}\in K} [\sigma^p,\sigma^{p-1}][\sigma^{p-1},\sigma^{p-2}]=0.$$

5.3. Chains, cycles, boundaries and homology groups.

Definition 5.13. Let *K* be an oriented complex. A *p*-chain is a formal linear finite linear combination $\sum m_i \sigma_i^p$ where the m_i are integers and the σ_i^p are from *K*. We denote by $C_p(K)$ the set of all *p*-chains.

Definition 5.14. We define the *boundary map* ∂ : $C_p(K) \rightarrow C_{p-1}(K)$ by

$$\partial(\sum g_i\sigma_i^p) = \sum_{\sigma^{p-1}} g_i[\sigma_i^p, \sigma^{p-1}]\sigma^{p-1}.$$

Theorem 5.15.

$$\partial^2 = 0$$

Definition 5.16. A *p*-cycle is a *p*-chain in the kernel of ∂ which we denote by $Z_p(K)$. A *p*-boundary is an element of the image of ∂ which we denote by $B_p(K)$. We say two cycles are *homologous* if they differ by a boundary. We define $H_p(K) = Z_p(K)/B_p(K)$ to be the *p*th homology group of *K*.

Theorem 5.17. *The homology groups are independent of the choice of orientation on K*

Definition 5.18. Two simplices σ_0 and σ_1 in a complex *K* are said to be combinatorially connected if there exist verticest a_0, \ldots, a_p in *K* with a_0 a vertex of σ_0 , a_p a vertex of σ_1 and such that $\langle a_0, a_1 \rangle, \langle a_1, a_2 \rangle$, $\ldots, \langle a_{p-1}, a_p \rangle$ are all in *K*.

Note 5.4. Combinatorial connectedness is an equivalence relation and the equivalence classes are called the cobinatorial components of *K*.

Proposition 5.19. A complex K is combinatorially connected if and only if |K| is path connected.

Theorem 5.20. If *K* is a complex then $H^0(K) = \mathbb{Z}^d$ where *d* is the number of combinatorial components of *K*.

5.4. **Final comments.** The last result shows that $H^0(K)$ depends only on the topology of |K|. Much more is true, if *K* and *L* are complexes and |K| and |L| are homeomorphic then $H^p(K) = H^p(L)$ for all *p*.