
SUMMARY OF ALGEBRAIC TOPOLOGY 2006

Note: This is as summary of the course as I expect it to look as of 2006/7/24 if we don’t do de Rham
cohomology. It will no doubt change along the way in which case I will hand out an updated summary.

1. Introduction.

Discussion of what algebraic topology is good for.

2. Categories, groupoids and functors

Definition 2.1. A category C consists of a pair of sets Mor(C) and Ob(C) with two maps s, t : Mor(C) → Ob(C)
called source and target satisfying the following requirements:

If X, Y ∈ Ob(C) denote by Mor(X, Y ) the set of all morphisms f with s(f ) = X and t(f ) = Y . Then we
have a composition

Mor(X, Y ) × Mor(Y , Z) → Mor(X, Z)
(f , g) , g ◦ f

which satisfies an associativity condition (f ◦ g) ◦ h = f ◦ (g ◦ h) whenever the compositions are defined.
Moreover for every X ∈ Ob(C) there is an identity morphism 1X which satisfies 1Y ◦ f = f ◦ 1X = f for every
f ∈ Mor(X, Y ) and every X, Y ∈ Ob(C).

Definition 2.2. If C is a category a morphism f ∈ Mor(X, Y ) is called invertible if there exists g ∈ Mor(Y , X)
such that g ◦ f = 1X and f ◦ g = 1Y .

Note 2.1. As with groups we can show that if a morphism f is invertible then the corresponding morphism g
is unique. We call it the inverse (f −1) of f .

Definition 2.3. A category in which all morphisms are invertible is called a groupoid.

Proposition 2.4. Let C be a groupoid. Then

(1) For any object X, Mor(X, X) is a group.
(2) For any morphism f ∈ Mor(X, Y ) the function

ιf : Mor(X, X) → Mor(Y , Y )

defined by ιf (g) = f gf −1 is an isomorphism of groups.

Definition 2.5. A groupoid is called transitive if Mor(X, Y ) ≠ ∅ for all objects X and Y .

Corollary 2.6. For a transistive groupoid the groups Mor(X, X) are all isomorphic.

Definition 2.7. A functor F between two categories C and D is a pair of functions F : Mor(C) → Mor(D) and
F : Ob(C) → Ob(D) such that:

(1) F(Mor(X, Y )) ⊂ Mor(F(X), F(Y )) for all X, Y ∈ Ob(C).
(2) F(1X) = 1F(X) for all X ∈ Ob(C).
(3) If f ∈ Mor(X, Y ) and g ∈ Mor(Y , Z) then F(g ◦ f ) = F(g) ◦ F(f ) for all X, Y ∈ Ob(C).

Note 2.2. Sometimes we have all the conditions of a functor except that F(g ◦ f ) = F(f ) ◦ F(g). In this case
we call it a contravariant functor and make the distinction by calling the case above a covariant functor.

Lemma 2.8. Let F : C → D be a functor. If f ∈ Mor(X, Y ) is a morphism in C which is invertible then F(f ) is
invertible.
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2 ALGEBRAIC TOPOLOGY

3. Topology

3.1. Metric Spaces.

Definition 3.1. Let X be a set. Then a map d : X × X → R is called a metric on X if it satisfies:

(1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y .
(2) d(x, y) = d(y, x) for all x, y ∈ X.
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Note 3.1. If d is a metric on X the pair (X, d) is called a metric space.

Proposition 3.2. Let X be any set and define

d(x, y) =
{

1 x = y
0 x ≠ y

Then d is a metric. This metric is called the discrete metric on X.

Proposition 3.3. Let (X, d) be a metric space and Y ⊂ X. Define dY : Y × Y → R by restricting d : X × X → R
to Y × Y ⊂ X × X. Then dY is a metric on Y . This metric is called the subspace metric on Y .

Definition 3.4. If (X, d) is a metric space and x ∈ X and δ > 0 then we call

B(X, δ) = {y | d(x, y) < δ}
the open ball around x of radius δ.

Definition 3.5. Let (X, d) be a metric space. We call a subset U ⊂ X open if for all x ∈ U there is a δ > 0 such
that x ∈ B(x, δ) ⊂ U .

Definition 3.6. Let (X, d) be a metric space and let Td be the collection of all open subsets of X. Then:

(1) ∅, X ∈ Td.
(2) If U1 and U2 are in Td then U1 ∩ U2 ∈ Td.
(3) If Uα is in Td for all α ∈ I then ∪α∈IUα is in Td.

3.2. Topological Spaces.

Definition 3.7. Let X be a set and T ⊂ P(X) be a collection of subsets of X. We say that T is a topology on
X if it satisfies:

(1) ∅, X ∈ T .
(2) If U1 and U2 are in T then U1 ∩ U2 ∈ T .
(3) If Uα is in T for all α ∈ I then ∪α∈IUα is in T .

Note 3.2. If T is a topology we call the pair (X, T ) a topological space and the elements of T open subsets of
X.

Definition 3.8. If X is a set then T = P(X) is called the discrete topology on X.

Definition 3.9. If X is a set then T = {∅, X} is called the trivial topology.

Proposition 3.10. Let (X, d) be a metric space and let Td be the set of all open subsets. Then Td is a topology
on X.

Note 3.3. If (X, d) is a metric space we call the topology Td the metric topology on X.

Definition 3.11. If (X, T ) is a topological space and there exists a metric d on X such that T = Td then we
say that (X, T ) is metrizable.

Definition 3.12. We say a topological space X is Hausdorff if for all x ≠ y ∈ X there exist open sets U and V
with x ∈ U , y ∈ V and U ∩ V = ∅.

Proposition 3.13. Metric spaces are Hausdorff.

Corollary 3.14. Not all topological spaces are metrizable.

Definition 3.15. If (X, T ) is a topological space and C ⊂ X we say that C is closed if X − C is open.

Proposition 3.16. Let (X, T ) be a topological space. Then:

(1) ∅ and X are closed,
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(2) if C1 and C2 are closed then C1 ∪ C2 is closed, and
(3) if Cα is closed for all α ∈ I then ∩α∈ICα is closed.

Proposition 3.17. Let (X, T ) be a topological space and Y ⊂ X. Define

TY = {U ∩ Y | U ∈ T }
then TY is a topology on Y . This topology is called the subspace topology on Y .

Proposition 3.18. Let (X, d) be a metric space and Y ⊂ X. Then the metric topology TdY on Y determined by
the subspace metric coincides with the subspace topology on Y determined by the metric topology on X.

Proposition 3.19. Let (X1, T1) and (X3, T2) be topological spaces and let X = X1 × X2. Define T ⊂ P(X) by
requiring that U ∈ T if for all (x1, x2) ∈ U there exists U1 open in X1 and U2 open in X2 with

(x1, x2) ∈ U1 × U2 ⊂ U.

Then T is a topology on X. This topology is called the product topology on X1 × X2.

3.3. Continuous functions.

Definition 3.20. Let X and Y be topological spaces. We say that f : X → Y is continuous if for every open
subset U of Y we have f −1(U) ⊂ X open.

Definition 3.21. Let (X, dX) and (Y , dY ) be metric spaces and f : X → Y . We say that f is continuous if for
all x ∈ X and for all ε > 0 there is a δ > 0 such that f (B(x, δ)) ⊂ B(y, ε).

Proposition 3.22. Let f : X → Y be a function between metric spaces. Then f is continuous as a function
between metric spaces if and only if it is continuous as a function between topological spaces with the metric
topologies.

Proposition 3.23. Let f : X → Y be a map between topological spaces. Then f is continuous if and only if for
all closed subsets C ⊂ Y we have f −1(C) ⊂ X closed.

Proposition 3.24. Let X, Y and Z be topological spaces and assume f : X → Y and g : Y → Z are continuous.
Then g ◦ f : X → Z is continuous.

Proposition 3.25. Let X and Y be topological spaces. If z ∈ X then the following are continuous:

(1) πX : X × Y → X defined by πX(x, y) = x
(2) ιz : Y → X × Y defined by ιz(y) = (z, y).

Corollary 3.26. If f : X × Y → Z is continuous and x ∈ X then fx : Y → Z defined by fx(y) = f (x, y) is
continuous.

Proposition 3.27. Let f : X → Y1 × Y2 be defined by f (x) = (f1(x), f2(x)) where f1 : X → Y1 and f2 : X → Y2.
Then f continuous if and only if f1 and f2 are continuous.

Lemma 3.28 (Pasting Lemma). Let X = C ∩ D where C and D are closed in X. Let f : C → Y and g : D → Y be
continuous maps into a space Y such that f (x) = g(x) for all x ∈ C ∩ D. Then h : X → Y defined by

h(x) =
{

f (x) x ∈ C
g(x) x ∈ D

is a continuous map.

4. Homotopy theory

4.1. Homotopy.

Definition 4.1. Let f , g : X → Y be two continuous functions between topological spaces. We say that f is
homotopic to g if there exists a continuous function

H : [0, 1] × X → Y

satisfying H(0, x) = f (x) and H(1, x) = g(x) for all x ∈ X.

Note 4.1. We denote by Hs : X → Y the function Hs(x) = H(s, x). Note that each Hs is continuous and that
H0 = f and H1 = g.

Note 4.2. If f is homotopic to g we write f ' g

Proposition 4.2. Homotopy is an equivalence relation on continuous functions from X to Y .
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4.2. Path homotopy.

Definition 4.3. Let X be a topological space and x and y be points in X. Then a path in X from x to y is a
continuous map γ : [0, 1] → X such that γ(0) = x and γ(1) = y .

Note 4.3. If x = y then we call the path a loop in X at x.

Definition 4.4. Two paths γ, γ′ are called path homotopic if we have a continuous map H : [0, 1] × [0, 1] → X
such that, if we define Fs(t) = F(s, t), then each Fs : [0, 1] → X is a path from x to y and F0 = γ and F1 = γ′.

Proposition 4.5. Path homotopy is an equivalence relation on the set of all paths from x to y .

Note 4.4. We denote the equivalence class of a path, or loop γ by [γ].

Note 4.5. Notice that if we have a homotopy between two loops at x then each Fs is also a loop at x for every
s. The set of all equivalence classes of loops at x is denoted π1(X, x) and called the fundamental group of X
(at x).

Definition 4.6. If α and β are paths in X we call them composable if α(1) = β(0).

Given γ and β composable paths consider the function from [0, 1] to X defined by

α ? β(t) =
{

α(2t) 0 ≤ t ≤ 1/2

β(2t − 1) 1/2 ≤ t ≤ 1.

By the Pasting Lemma this is a path from α(0) to β(1) called the product of α and β. We call α ? β the path
product of α and β.

Lemma 4.7. If α and β are as above and α is homotopic to α′ and β to β′ then α ? β is homotopic to α′ ? β′.

This lemma shows that there is a well-defined product of homotopy classes of paths and loops defined by
[α][β] = [α ? β]. Denote by Π(X) the set of all paths in X and define s, t : Π(X) → X by s([γ]) = γ(0) and
t([γ]) = γ(1).

Proposition 4.8. The pair Π(X) and X define the morphisms and objects of a groupoid with the path product.
The inverse of [γ] is [γ−1] where γ−1(t) = γ(1 − t). The identity at x ∈ X is the equivalence class of the
constant path ex(t) = x.

This groupoid is called the homotopy groupoid of X and denoted Π(X).

Definition 4.9. We say that a topological space X is path-connected if for any x, y ∈ X there is a path from
x to y .

Proposition 4.10. The relation ‘there is a path joining x to y ’ is an equivalence relation on any topological
space.

Note 4.6. The equivalence classes under this relation are called the path-components of X.

Proposition 4.11. A topological space X is path-connected if and only if the homotopy groupoid is transitive.

Note 4.7. The group of all morphisms beginning and ending at x in Π(X) is denoted π1(X, x) and called the
fundamental group of X. It is the set of all path-homotopy classes of loops as x with the path product.

We can apply the results from groupoids as follows: If α is a path from x to y and γ is a loop at x then
we can define a loop at y by (α−1γ)α where α−1(t) = α(1 − t). We define a map

I[α] : π1(X, x) → π1(X, y)

by I[α]([γ]) = [(α−1γ)α] = [α−1(γα)]. and it follows as before that:

Proposition 4.12. The map I[α] is a group isomorphism and (I[α])−1 = I[α−1].

Note 4.8. Because of this proposition we often drop the reference to the point x for a path connected space
X and just refer to the fundamental group π1(X) of X.
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4.3. Contractible maps.

Definition 4.13. If the identity map on X is homotopic to a constant map then we call X contractible.

Example 4.1. If X = Y = Rn then the identity map is constractible to the constant map to zero by F(s, x) = sx.

Example 4.2. Let X be a star shaped region in Rn, that is a region X ⊂ Rn with a point x ∈ X with the property
that that for every other point y ∈ X the line segment from X to y is also in X. Then X is contractible.

Definition 4.14. A topological space is called simply connected if it is path connected and its fundamental
group is zero.

Proposition 4.15. A contractible space is simply-connected.

Note 4.9. The converse is not true. We shall see later that π1(S2) = 0 and S2 is certainly path-connected but
it is not contractible.

If f : X → Y is a continous map then we can define a map π1(f ) = f∗ from π1(X, x) to π1(Y , f (x)) as
follows. Let γ be a loop at x then f ◦ γ is a loop at f (x). It is easy to check that if γ is homotopic to γ′ then
f ◦ γ is homotopic to f ◦ γ′ and so we can define f∗([γ]) = [f ◦ γ]. It is also easy to check that f∗ is a group
homomorphism.

Let f and g be homotopic continuous maps from a space X to a space Y . Let F : [0, 1]×X → Y be a homotopy.
Then we have f∗ : π1(X, x) → π1(Y , f (x)) and g∗ : π1(X, x) → π1(Y , g(x)). Define α(t) = F(t, x), then α is
a path from f (x) to g(x). Recall the definition of I[α] : π1(Y , f (x)) → π1(Y , g(x)) from above. Then we have

Proposition 4.16. With the notation as in the preceeding discussion we have

I[α] ◦ f∗ = g∗.

Definition 4.17. A map f : X → Y is called a homotopy equivalence if there is a map g : Y → X such that f ◦ g
is homotopic to idY and g ◦ f is homotopic to idX .

Definition 4.18. Two spaces are called homotopy equivalent if there is a homotopy equivalence between them.

Corollary 4.19. If two space are homotopy equivalent then they have isomorphic fundamental groups.

Example 4.3. A contractible space is homotopic to a point, that is to a space with only one element.

Example 4.4. The space R2 − {0} is homotopy equivalent to S1.

4.4. The fundamental group of the circle. We define a continuous map p : R → S1 by p(x) = (cos(x), sin(x)).
It follows from elementary calculus that we can cover S1 by open sets Ui such that there are continuous maps
si : Ui → R such that p(si(y)) = y for all y ∈ S1. We have two important results.

Proposition 4.20 (Path lifting property.). Let y ∈ S1 and x ∈ R with p(x) = y . Let γ be a loop at x then there
is a unique continuous map γ̂ : [0, 1] → R such that p ◦ γ̂ = γ and γ̂(0) = x.

Note 4.10. We call γ̂ a lift of γ or we say that it covers γ.

Proposition 4.21 (Covering homotopy property.). Let y ∈ S1 and x ∈ R with p(x) = y . Let γ and Rho be
loops at x and F : [0, 1] × [0, 1] → S1 be a homotopy from γ to Rho. Let γ̂ be a lift of γ with γ(0) = x. Then
there is a unique lift of F to a map F̂ : [0, 1] × [0, 1] → R such that p ◦ F̂ = F and F(0, t) = γ̂(t) for all t.

It follows that if γ is a loop in S1 then (1/2π)(γ̂(0)−γ̂(1)) is an integer that depends only on the homotopy
class of γ. We have

Proposition 4.22. The map

[γ] ,
1

2π
(γ̂(0) − γ̂(1))

defines an isomorphism between π1(S1, x) and Z.

Note 4.11. We call this integer the degree or winding number of γ.

Note 4.12. If the loops in question are differentiable we can construct the winding number by the integral

1
2π

∫
1
γ

dγ
dt

dt.

Corollary 4.23. The fundamental group of R2 − {0} is Z.

Theorem 4.24 (Brouwer fixed point theorem). If f : D → D is a continous map of the disk D = {x ∈ R2 | |x|2 ≤
1}to itself then f has a fixed point, that is there is an x ∈ D with f (x) = x.
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4.5. Fundamental group of a product.

Proposition 4.25. Let F : X → Y ×Z be a function between topological spaces. Then it defines functions f : X → Y
and g : X → Z by F(x) = (f (x), g(x)). Moreover any pair of functions f and g defines a function F in this
manner. In such a situation F is continuous if and only if the two functions f and g are continuous.

With this result it easy to prove:

Proposition 4.26. The fundamental group of a product X × Y is isomorphic to π1(X) × π1(Y ).

Example 4.5. The fundamental group of a torus S1 × S1 is Z × Z = Z2.

4.6. Van Kampen theorem. If G and H are two groups we define the free product G ∗H to consist of all finite
‘words’

g1h1g2h2 . . . gkhk

subject to the obvious identifications if some of the gi or hi are the identity. For example if eH is the identity
in H then g1eHg2h2 = (g1g2)h2. We define a product on G ∗ H by juxtaposing words and simplifying if
necessary. For example if we justapose gh and eGh−1g′ the result would be (gh)(eGh−1g′) = gg′.

If S ⊂ G is a subset of a group define 〈S〉 to be the normal subgroup generated by S that is the smallest
normal subgroup containing S.

Let X = U ∪ V where U and V are open and U ∩ V is path-connected. Define ιU and ιV to be the inclusion
maps from U ∩ V into U and V respectively. Then we have

Theorem 4.27 (Van Kampen theorem (not proved)). In the situation above the homotopy group of X is

π1(X) = π1(U) ∗ π1(V)
〈{ιU ([γ−1])ιV ([γ]) | [γ] ∈ π1(U ∩ V)}〉 .

Corollary 4.28 (Weak Van Kampen theorem). If π1(U) = π1(V) = 0 and U ∩ V is path connected then π1(U ∪
V) = 0.

Corollary 4.29. If X = U ∪ V and U ∩ V is simply connected then π1(X) = π1(U) ∗ π1(V).

Proposition 4.30. The fundamental group of the n sphere for n > 1 is 0.

Proposition 4.31. The fundamental group of the plane with r points removed is the free group on r generators
that is the free product of r copies of Z.

4.7. Final thoughts about homotopy theory. In this section I discussed some other aspects of homotopy
theory that aren’t for examination. I talked about the higher homotopy groups πn(X), and why they are
abelian. Discussed suspension and how it shows that πk(Sn) is Z if k = n and zero if 0 < k < n. Drew
the Hopf fibration. Also explained the Poincare conjecture. Also talked about the fundamental group of a
Riemann surface and showed how to cut it up to make a polygon.

5. Homology of geometric complexes

5.1. Geometric complexes and polyhedra.

Definition 5.1. A set of k + 1 points a0, . . . , ak+1 in Rn is called geometrically independent if they lie in no
k − 1 dimensional hyperplane.

Definition 5.2. Let a0, . . . , ak be a geometrically independent set of points in Rn. The k dimensional geometric
simplex or k-simplex spanned by them is

< a0 . . . ak >=


k∑

i=0

λiai |
k∑

i=0

λi = 1, 0 ≤ λi ≤ 1

 .

Note 5.1. The numbers λ0, . . . , λk are called the barycentric co-ordinates of x =
∑k

i=0 λiai. The subset of
< a0 . . . ak > consisting of all points with positive barycentric co-ordinates is called the open k-simplex.

Note 5.2. The ai are called the vertices of the k-simplex < a0 . . . ak >.

Definition 5.3. A simplex σk is called a face of a simplex σn if every vertex of σk is a vertex of σn.

Definition 5.4. Two simplice σn and σm are called properly joined if σn ∩ σm = ∅ or σn ∩ σm is a face of
each of σm and σn.
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Definition 5.5. A geometric complex (or simplicial complex) is a finite family K of geometric simplices which
are properly joined and such that any face of a simplex in K is also in K.

The union of all the simplices in K with the subspace topology from Rn is denoted |K| and called the
geometric carrier of K or the polyhedron associated to K.

Definition 5.6. Let X be a topological space. If X is homeomorphic to |K| then X is called triangulable and K
is called a triangulization of K.

Definition 5.7. The closure of a simplex Cl σk is the complex consisting of σ k and all its faces.

Definition 5.8. If K is a complex the r -skeleton is the set of all simplices of dimension less than or equal to
k.

5.2. Orientation of geometric complexes.

Definition 5.9. An orientation of a complex is a choice of ordering up to an even permutation.

Note 5.3. We extend the notation introduced so that < a0 . . . ak >= + < a0 . . . ak > denotes the oriented
simplex with orientation determined by the ordering a0 . . . αk and − < a0 . . . ak > denotes the simplex with
the opposite orientation.

Definition 5.10. A complex K is called oriented if each simplex in K is oriented.

Definition 5.11. Let K be an oriented complex. Let σ p+1 and σ p be two simplices in K of dimension p + 1
and p respectively. Define [σ p+1, σ p] as follows. If σ p is not a face of σ p+1 then [σ p+1, σ p] = 0. If
σ p =< a0 . . . ap > and v is the additional vertex in σ p+1 then σ p+1 = [σ p+1, σ p] < va0 . . . ap >.

Theorem 5.12. Let σ p, σ p−2 be a p simplex and a p − 2 simplex in an oriented complex K. Then∑
σ p−1∈K

[σ p, σ p−1][σ p−1, σ p−2] = 0.

5.3. Chains, cycles, boundaries and homology groups.

Definition 5.13. Let K be an oriented complex. A p-chain is a formal linear finite linear combination
∑

miσ
p
i

where the mi are integers and the σ p
i are from K. We denote by Cp(K) the set of all p-chains.

Definition 5.14. We define the boundary map ∂ : Cp(K) → Cp−1(K) by

∂(
∑

giσ
p
i ) =

∑
σ p−1

gi[σ p
i , σ p−1]σ p−1.

Theorem 5.15.
∂2 = 0

Definition 5.16. A p-cycle is a p-chain in the kernel of ∂ which we denote by Zp(K). A p-boundary is an
element of the image of ∂ which we denote by Bp(K). We say two cycles are homologous if they differ by a
boundary. We define Hp(K) = Zp(K)/Bp(K) to be the pth homology group of K.

Theorem 5.17. The homology groups are independent of the choice of orientation on K

Definition 5.18. Two simplices σ0 and σ1 in a complex K are said to be combinatorially connected if there
exist verticest a0, . . . , ap in K with a0 a vertex of σ0, ap a vertex of σ1 and such that < a0, a1 >, < a1, a2 >
, . . . , < ap−1, ap > are all in K.

Note 5.4. Combinatorial connectedness is an equivalence relation and the equivalence classes are called the
cobinatorial components of K.

Proposition 5.19. A complex K is combinatorially connected if and only if |K| is path connected.

Theorem 5.20. If K is a complex then H0(K) = Zd where d is the number of combinatorial components of K.

5.4. Final comments. The last result shows that H0(K) depends only on the topology of |K|. Much more is
true, if K and L are complexes and |K| and |L| are homeomorphic then Hp(K) = Hp(L) for all p.


