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Notes on Differential Forms – Michael Murray

1. The exterior algebra of a vector space.

If V is a finite dimensional vector space we define a k-linear map to be a map

ω : V × · · · × V → R,

where there are k copies of V , which is linear in each factor. That is

ω(v1, . . . , vi−1, αv + βw,vi+1, vk) = αω(v1, . . . , vi−1, v, vi+1, vk)
+βω(v1, . . . , vi−1,w,vi+1, vk).

We define a k-linear map ω to be totally antisymmetric if

ω(v1, . . . , vi, vi+1, . . . , vk) = −ω(v1, . . . , vi+1, vi, . . . , vk)

for all vectors v1, . . . , vk and all i. Note that it follows that

ω(v1, . . . , v, v, . . . , vk) = 0

and if π ∈ Sk is a permutation of k letters then

ω(v1, v2, . . . , vk) = sgn(π)ω(vπ(1), vπ(2), . . . , vπ(k))

where sgn(π) is the sign of the permutation π . We denote the vector space of all k-linear, totally
antisymmetric maps by Λk(V∗). and call them k forms. If k = 1 the Λ1(V∗) is just V∗ the space
of all linear functions on V and if k = 0 we make the convention that Λ0(V∗) = R. We need to
collect some results on the linear algebra of these spaces.

Assume that V has dimension n and that v1, . . . , vn is a basis of V . Let ω be a k form. Then if
w1, . . . ,wk are arbitrary vectors and we expand them in the basis as

wi =
n∑
j=1

wijvj .

then we have

ω(w1, . . . ,wk) =
n∑

j1,...,jk=1

w1j1w2j2 . . .wkjkω(vj1 , . . . , vjk)

so that it follows that ω is completely determined by its values on basis vectors. In particular if
k > n then Λk(V∗) = 0.

If α1 and α2 are two linear maps in V∗ then we define an element α1 ∧ α2, called the wedge
product of α1 and α2, in Λ2(V∗) by

α1 ∧α2(v1, v2) = α1(v1)α2(v2)−α1(v2)α2(v1).

More generally if ω ∈ Λp(V∗) and ρ ∈ Λq(V∗) we define ω∧ ρ ∈ Λp+q(V∗) by

(ω∧ ρ)(w1, . . . ,wp+q)

= 1
p!q!

∑
π∈Sp+q

sgn(π)ω(wπ(1), . . . ,wπ(p))ρ(wπ(p+1), . . . ,wπ(p+q)).

Assume that dim(V) = n. Then we leave as an exercise the following proposition.

Proposition 1.1. The direct sum

Λ(V∗) =
n⊕
k=1

Λk(V∗)

with the wedge product is an associative algebra.
1
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We call Λ(V∗) the exterior algebra of V∗. We call an elementω ∈ Λk(V∗) an element of degree
k. Because of associativity we can repeatedly wedge and disregard brackets. In particular we can
define the wedge product of m elements in V∗ and we leave it as an exercise to show that

α1 ∧α2 ∧ · · · ∧αm =
∑
π∈Sm

sgn(π)α1(vπ(1))α2(vπ(2)) . . . αm(vπ(m)).

Notice that

α1 ∧ · · · ∧αi ∧αi+1 ∧ · · · ∧αm = −α1 ∧ · · · ∧αi+1 ∧αi ∧ · · · ∧αm

and that

α1 ∧ · · · ∧α∧α∧ · · · ∧αm = 0.

Still assuming that V is n dimensional choose a basis v1, . . . , vn of V . Define the dual basis of
V∗, α1, . . . , αn, by

αi(vj) = δij
for all i and j. We want to define a basis of Λk(V∗). Define elements of Λk(V) by choosing k
numbers i1, . . . , ik between 1 and n and considering

αi1 ∧ · · · ∧αik .

We have

Proposition 1.2. The vectors vi1 ∧ · · · ∧ vik where 1 ≤ i1 < · · · < ik ≤ n are a basis for Λk(V∗).

It is sometimes useful to sum over all k-tuples i1, . . . , ik not just ordered ones. We can do this
— an keep the uniqueness of the coefficients ωi1...ik — if we demand that they be antisymmetric.
That is

ωj1...jiji+1...jk = −ωj1...ji+1ji...jk .

Then we have

ω =
∑

1≤i1<···<ik≤nωi1...ikα
i1 ∧ · · · ∧αik

=
∑

1≤i1,...,ik≤n
1
k!ωi1...ikα

i1 ∧ · · · ∧αik .

We will need one last piece of linear algebra called contraction. Letω ∈ Λk(V) and v ∈ V . Then
we define a k− 1 form ιvω, the contraction of ω and v by

ιv(ω)(v1, . . . , vk−1) =ω(v1, . . . , vk−1, v)

where v1, . . . , vk−1 are any k− 1 elements of V .

Example 1.1. Consider the vector space R3. Then we know that zero forms and one forms are
just real numbers and linear maps respectively. Notice that in the case of R3 we can identify any
linear map v with the vector v = (v1, v2, v3) where

v(x) =
3∑
i=1

vixi.

Let αi be the basis of linear functions defined by αi(x) = xi. We have seen that every two form
ω on R3 has the form

ω =ω1α2 ∧α3 +ω2α3 ∧α1 +ω3α1 ∧α2.

Every three-form µ takes the form

µ = aα1 ∧α2 ∧α3.

It follows that in R3 we can identify three-forms with real numbers by identifying µ with a and
we can identify two-forms with vectors by identifying ω with (ω1,ω2,ω3).

It is easy to check that with these identifications the wedge product of two vectors v and w is
identified with the vector v ×w. In other words wedge product corresponds to cross product.
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2. Differential forms.

We can now apply the constructions of the previous section to the tangent space to a manifold.
We define a k-form on the tangent space at x ∈ M to be an element of

ΛkT∗
xM.

We want to define k-form ‘fields’ in the same way we define vector fields except that we do not
call them k-form fields we call them differentiable k-forms or sometimes just k-forms. Choose
co-ordinates (U,ψ) on M . Then ω(x) in Λk(T∗

xM) can be be written as

ω(x) =
∑

i1,...,ik

1
k!
ωi1,...,ikdψ

i1 ∧ · · · ∧ dψik

at each x ∈ U . Hence we have defined a function

ωi1,...,ik : U → R

for each set of k indices. We call these functions the components of ω with respect to the co-
ordinate chart. The components satisfy the anti-symmetry conditions in the previous section. We
can also define the ωi1,...,ik as

ωi1,...,ik =ω(∂
∂ψi1

, . . . ,
∂
∂ψik

).

We define a smooth differential form by

Definition 2.1 (Differential form.). A differential formω is smooth if its components with respect
to a collection of co-ordinate charts whose domains cover M are smooth.

We denote by Ωk(M) the set of all smooth differentiable k forms on M . Notice that Ω0(M) is
just C∞(M) the space of all smooth functions on M .

Using the equation

ωi1,...,ik =ω(∂
∂ψi1

, . . . ,
∂
∂ψik

).

for the components of the differential form we can calculate the way the components change if
we use another co-ordinate chart (V , χ). We have

∂
∂ψi

=
n∑
a=1

∂χa

∂ψi
∂
∂χa

and substituting this into the formula gives

ωi1,...,ik =
n∑

a1,...,ak=1

(
∂χa1

∂ψi1
. . .
∂χan

∂ψin
)ωa1,...,ak .

2.1. Exterior derivative. The usual derivative on functions defines a linear differential operator

d : Ω0(M)→ Ω1(M).

As well as being linear d satisfies the Leibniz rule:

d(fg) = fdg + (df)g.
We have

Proposition 2.2. If the dimension of M is n then there are unique linear maps

d : Ωp(M)→ Ωp+1(M)

for all p = 0, . . . , n− 1 satisfying:

(1) If p = 0 d is the usual derivative,
(2) d2 = 0, and
(3) d(ω∧ ρ) = (dω)∧ ρ + (−1)pω∧ (dρ) where ω ∈ Ωp(M) and ρ ∈ Ωq(M).

This map d is called the exterior derivatice.
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Example 2.1. Recall from 1.1 the way in which we identified one-forms and two-forms on R3 with
vectors. It follows that differentiable one and two forms on R3 can be identified with vector-fields.
Similarly zero and three forms are functions. With these identifications it is straightforward
to check that the exterior derivative of zero, one and two forms corresponds to the classical
differential operators grad, curl and div.

If (U,ψ) is a co-ordinate chart then the proposition shows us how to define the exterior deriv-
ative of a differential form locally. If we have

ω(x) =
∑

i1,...,ik

1
k!
ωi1,...,ikdψ

i1 ∧ · · · ∧ dψik

then

dω(x) =
∑

j,i1,...,ik

1
k!

∂ωi1,...,ik
∂ψj

dψj ∧ dψi1 ∧ · · · ∧ dψik .

2.2. Pulling back differential forms. We have seen that if f : M → N is a smooth map then it has
a derivative or tangent map Tx(f ) that acts on tangent vectors in TxM by sending them to Tf(x)N.
Moreover Tx(f ) is linear. Recall that if X : V → W is a linear map between vector spaces then it
has an adjoint or dual X∗ : W∗ → V∗ defined by

X∗(ξ)(v) = ξ(X(v))
where ξ ∈ W∗ and v ∈ V . Notice that X∗ goes in the opposite direction to X. So we have a linear
map called the cotangent map

T∗
x (f ) : Tf(x)N → TxM

which is just the adjoint of the tangent map. It is defined by

T∗
x (f )(ω)(X) =ω(Tx(f )(X).

This action defines a map on differential forms called the pull-back by f and denoted f∗. if
ω ∈ Ωk(N) then we define f∗(ω) ∈ Ωk(M) by

f∗(ω)(x)(X1, . . . , Xk) =ω(f(x))(Tx(f )(X1), . . . , Tx(f )(Xk))

for any X1, . . . , Xk in TxM .
Notice that if φ is a zero form or function on N then f−1(φ) = φ ◦ f . The pull back map

f∗ : Ωq(N)→ Ωq(M).
satisfies the following proposition.

Proposition 2.3. If f : M → N is a smooth map and ω and µ is a differential form on N then:

(1) df∗(ω) = f∗(dω), and
(2) f∗(ω∧ µ) = f∗(ω)∧ f∗(µ).

3. Integration of differential forms

Let U ⊂ Rn and ψ : Rn → Rn be a diffeomorphism. Then it is well known that if f : ψ(U) → R
is a function then ∫

U
f ◦ψ| det

(
∂ψi

∂xj

)
|dx1 . . . dxn =

∫
ψ(U)

fdx1 . . . dxn.

In this formula we regard dx1 . . . dxn as the symbol for Lebesgue measure. However it is very
suggestive of the notation for differential forms developed in the previous section.

If ω is a differential n form on V = ψ(U) then we can write it as

ω(x) = f(x)dx1 ∧ · · · ∧ dxn.
If we pull it back with the diffeomorphism φ then, as we seen before,

φ∗(ω) = f(x)det

(
∂ψi

∂xj

)
dx1 ∧ · · · ∧ dxn.
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So differential n forms transform by the determinant of the jacobian of the diffeomorphism and
Lebesgue measure transforms by the absolute value of the determinant of the jacobian of the
diffeomorphism. We define the integral of a differential n form by∫

V
ω =

∫
V
f(x)dx1 . . . dxn

when ω = f(x)dx1 ∧ · · · ∧ dxn. Alternatively we can write this as∫
V
ω =

∫
V
ω(
∂
∂x1 , . . . ,

∂
∂xn

)dx1 . . . dxn.

Call a diffeomorphism ψ : U → V orientation preserving if

det

(
∂ψi

∂xj

)
(x) > 0

for all x ∈ U . Then we have

Proposition 3.1. If ψ : U → ψ(U) is an orientation preserving diffeomorphism andω is a differen-
tial n form on ψ(U) then ∫

ψ(U)
ω =

∫
U
ψ∗(ω).

3.1. Orientation. Let V be a real vector space of dimension n. Then define det(V) = Λn(V). This
is a real, one dimensional vector space. So the set det(V) = {0} is disconnected. An orientation
of the vector space V is a choice of one of these connected components. If X is an invertible
linear map from V to V then it induces a linear map from det(V) → det(V) which is therefore
multiplication by a complex number. This number is just det(X) the determinant of X If M is a
manifold of dimension n then the same applies to M ; det(TxM) − {0} is a disconnected set. We
define

Definition 3.2. A manifold is orientable if there is a non-vanishing n-form on M . Otherwise it is
called non-orientable.

If η and ζ are two non-vanishing n forms then η = fζ for some function f which is either
strictly negative or strictly positive. Hence the set of non-vanishing n forms divides into two sets.
We have

Definition 3.3 (Orientation). An orientation on M is a choice of one of these two sets.

An orientation defines an orientation on each tangent space TxM . We call an n form positive if
it coincides with the chosen orientation negative otherwise. We say a chart (U,ψ) is positive or
oriented if dψ1 ∧ · · · ∧ dψn is positive. Note that if a chart is not positive we can make it so by
changing the sign of one co-ordinate function so oriented charts exits. If we chose two oriented
charts then we have that

χ ◦ψ−1
|ψ(U∩V)

is an oriented diffeomorphism. The converse is also true.
We can use this proposition to define the integral of differential forms on a manifold. Let

{(Uα,ψα)}α∈I be a covering of M by oriented co-ordinate charts. Choose a partition of unity φα
subordinate to Uα. Then if ω is a differential n form we can write

ω =
∑
α
φαω

where the support of φaω is in Uα. First we define the integral of each of the forms φαω∫
M
φaω =

∫
ψα(Uα)

(ψ−1)∗(φaω).

Then we define the integral of ω to be∫
M
ω =

∑
α∈I

∫
ψα(Uα)

(ψ−1)∗(ω).

This is independent of all the choices we have made except the choice of orientation.
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Typically we don’t calculate an integral in this way. Instead if M is an n dimensional manifold
and ω is an n-form then we look for an oriented co-ordinate chart (U,ψ) that covers all of M
except a set of measure zero. Then∫

M
ω =

∫
U
ω =

∫
ψ(U)

ω12...ndψ1 . . . dψn.

4. Stokes theorem.

Recall the Fundamental Theorem of Calculus: If f is a differentiable function then

f(b)− f(a) =
∫ a
b

df
dt
(x)dx.

In the language we have developed in the previous section this can be written as

f(b)− f(a) =
∫
[a,b]

df

where we orient the 1-dimensional manifold [a, b] in the positive direction. Stokes theorem is a
generalisation of this and Stokes theorem, Green’s theorem, Gauss’ theorem and the Divergence
theorem.

Theorem 4.1 (Stoke’s theorem). LetM be an oriented manifold with boundary of dimension n and
let ω be a differential form of degree n− 1 with compact support then∫

M
dω =

∫
∂M
ω.

Appendix A. Partitions of unity.

If M is a manifold a partition of unity is a collection of smooth non-negative functions {ρα}α∈I
such that everyx ∈ M has neighbourhood on which only a finite number of the ρ are non-vanishing
and such that

∑
α∈I ρα = 1.

Recall that if f : M → R is smooth function then we define supp(f ) to be the closure of the
set on which f is non-zero. There are two basic existence results on a paracompact, Hausdorff
manifold.

(1) If {Uα}α∈I is an open cover ofM there is a partition of unity {ρα}α∈I with supp(ρα) ∈ Uα.
Such a partition of unity is called subordinate to the cover.

(2) If {Uα}α∈I is an open cover of M there is a partition of unity {ρα}β∈J , with a possibly
different indexing set J with each supp(ρβ) in some Uα.


