Algebraic Topology IV 2004

Assignment 1 - Due 14th September

1. Consider the set $X = \{a, b, c\}$. Prove that $\mathcal{P}(X)$ has 256 subsets. Find four topologies on X which are different in the sense that they are not equal and one cannot be obtained from the other by permuting the elements of X. Find two subsets of $\mathcal{P}(X)$ which are not topologies. If you follow the links from http://mathworld.wolfram.com/Topology.html you will find a listing of the number of topologies on a finite set. For X it is 29 if you do allow permutations of elements.

2. (a) If \mathcal{B}_1 and \mathcal{B}_2 are two bases for topologies \mathcal{T}_1 and \mathcal{T}_2 on a set *X* show that $\mathcal{T}_1 = \mathcal{T}_2$ if and only if for every $x \in B_1 \in \mathcal{B}_1$ there is a $B_2 \in \mathcal{B}_2$ with $x \in B_2 \subseteq B_1$ and for every $x \in B_2 \in \mathcal{B}_2$ there is a $B_1 \in \mathcal{B}_1$ with $x \in B_1 \subseteq B_2$.

(b) Show that the following bases on \mathbb{R}^2 give rise to the same topology.

$$\mathcal{B}_1 = \{ B(x,\delta) \mid x \in \mathbb{R}^2, \delta > 0 \}$$

$$\mathcal{B}_2 = \{ \{ (y^1, y^2) \in \mathbb{R}^2 \mid \max\{ |x^1 - y^1|, |x^2 - y^2| \} < \delta \} \mid (x_1, x_2) \in \mathbb{R}^2, \delta > 0 \}.$$

I will accept a *careful* drawing as a justification for the inclusions you need to prove.

3. Let *X*, *Y* and *Z* be topological spaces. Show that $F: X \to Y \times Z$ defined by F(x) = (f(x), g(x)) for $f: X \to Y$ and $g: X \to Z$ is continuous if and only if *f* and *g* are continuous.

4. Let *X* be a topological space containing points *x*, *y*, *z* and *w*. Let α be a path from *x* to *y*, β a path from *y* to *z* and *y* a path from *z* to *w*. Choose numbers 0 < a < b < 1. Define a path $\alpha \star \beta \star \gamma$ from *x* to *w* by

$$\alpha \star \beta \star \gamma = \begin{cases} \alpha(t/a) & 0 < t < a \\ \beta((t-a)/(b-a)) & a < t < b \\ \gamma((t-b)/(1-b)) & b < t < 1 \end{cases}$$

Show that $\alpha \star \beta \star y$ is a continuous path from *x* to *z*. Show that the homotopy class of $\alpha \star \beta \star y$ is independent of *a* and *b*.

5. Let *X* be a topological space. If *y* is a path from *x* to *y* in *X* denote by

$$\begin{split} I_{\gamma} \colon \pi_1(X, \chi) \to \pi_1(X, \gamma) \\ [f] \mapsto [\gamma^{-1}][f][\gamma] \end{split}$$

the group homomorphism discussed in lectures. If ρ is another path from x to y show that $I_y = I_\rho$ if $y \simeq_p \rho$.

6. Define real projective space, $\mathbb{R}P_k$, to be the set of all lines through the origin in \mathbb{R}^{k+1} . Define a map $p: S^k \to \mathbb{R}P_k$ from the sphere to real projective space by mapping a unit vector to the line containing it. It is possible to make $\mathbb{R}P_k$ into a topological space so that p is continuous and moreover the following Propositions hold:

Proposition (Path lifting property). Let $y \in \mathbb{R}P_k$ and $x \in S^k$ with p(x) = y. Let y be a loop at x then there is a unique continuous map $\hat{y}: [0,1] \to S^k$ such that $p \circ \hat{y} = y$ and $\hat{y}(0) = x$.

Proposition (Covering homotopy property). Let $y \in \mathbb{R}P_k$ and $x \in S^k$ with p(x) = y. Let y and ρ be loops at x and $F: [0,1] \times [0,1] \to \mathbb{R}P_k$ be a path-homotopy from y to ρ . Let \hat{y} be a lift of y with y(0) = x. Then there is a unique lift of F to a map $\hat{F}: [0,1] \times [0,1] \to S^k$ such that $p \circ \hat{F} = F$ and $F(0,t) = \hat{y}(t)$ for all t.

Note that these are similar to the results used to calculate $\pi_1(S^1)$.

Show that p(u) = p(v) if and only if $u = \pm v$. Show that if $\gamma(t) = (\cos(t\pi), \sin(t\pi), 0, \dots, 0)$ then $p \circ \gamma$ defines a loop (i.e a path that begins and ends at the same point) in $\mathbb{R}P_k$. You may assume that p is continuous.

Calculate the fundamental group of $\mathbb{R}P_k$ for k > 1.