Algebraic Topology IV 2004

Assignment 1 - Due 14th September

1. Consider the set $X=\{a, b, c\}$. Prove that $\mathcal{P}(X)$ has 256 subsets. Find four topologies on X which are different in the sense that they are not equal and one cannot be obtained from the other by permuting the elements of X. Find two subsets of $\mathcal{P}(X)$ which are not topologies. If you follow the links from http://mathwor1d.wolfram.com/Topology.htm1 you will find a listing of the number of topologies on a finite set. For X it is 29 if you do allow permutations of elements.
2. (a) If \mathcal{B}_{1} and \mathcal{B}_{2} are two bases for topologies \mathcal{T}_{1} and \mathcal{T}_{2} on a set X show that $\mathcal{T}_{1}=\mathcal{T}_{2}$ if and only if for every $x \in B_{1} \in \mathcal{B}_{1}$ there is a $B_{2} \in \mathcal{B}_{2}$ with $x \in B_{2} \subseteq B_{1}$ and for every $x \in B_{2} \in \mathcal{B}_{2}$ there is a $B_{1} \in \mathcal{B}_{1}$ with $x \in B_{1} \subseteq B_{2}$.
(b) Show that the following bases on \mathbb{R}^{2} give rise to the same topology.

$$
\begin{aligned}
& \mathcal{B}_{1}=\left\{B(x, \delta) \mid x \in \mathbb{R}^{2}, \delta>0\right\} \\
& \mathcal{B}_{2}=\left\{\left\{\left(y^{1}, y^{2}\right) \in \mathbb{R}^{2} \mid \max \left\{\left|x^{1}-y^{1}\right|,\left|x^{2}-y^{2}\right|\right\}<\delta\right\} \mid\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \delta>0\right\} .
\end{aligned}
$$

I will accept a careful drawing as a justification for the inclusions you need to prove.
3. Let X, Y and Z be topological spaces. Show that $F: X \rightarrow Y \times Z$ defined by $F(x)=(f(x), g(x))$ for $f: X \rightarrow Y$ and $g: X \rightarrow Z$ is continuous if and only if f and g are continuous.
4. Let X be a topological space containing points x, y, z and w. Let α be a path from x to y, β a path from y to z and γ a path from z to w. Choose numbers $0<a<b<1$. Define a path $\alpha \star \beta \star \gamma$ from x to w by

$$
\alpha \star \beta \star \gamma= \begin{cases}\alpha(t / a) & 0<t<a \\ \beta((t-a) /(b-a)) & a<t<b \\ \gamma((t-b) /(1-b)) & b<t<1\end{cases}
$$

Show that $\alpha \star \beta \star \gamma$ is a continuous path from x to z. Show that the homotopy class of $\alpha \star \beta \star \gamma$ is independent of a and b.
5. Let X be a topological space. If γ is a path from x to y in X denote by

$$
\begin{aligned}
I_{\gamma}: \pi_{1}(X, x) & \rightarrow \pi_{1}(X, y) \\
{[f] } & \mapsto\left[\gamma^{-1}\right][f][\gamma]
\end{aligned}
$$

the group homomorphism discussed in lectures. If ρ is another path from x to y show that $I_{\gamma}=I_{\rho}$ if $\gamma \simeq_{p} \rho$.
6. Define real projective space, $\mathbb{R} P_{k}$, to be the set of all lines through the origin in \mathbb{R}^{k+1}. Define a map $p: S^{k} \rightarrow \mathbb{R} P_{k}$ from the sphere to real projective space by mapping a unit vector to the line containing it. It is possible to make $\mathbb{R} P_{k}$ into a topological space so that p is continuous and moreover the following Propositions hold:

Proposition (Path lifting property). Let $y \in \mathbb{R} P_{k}$ and $x \in S^{k}$ with $p(x)=y$. Let γ be a loop at x then there is a unique continuous map $\hat{\gamma}:[0,1] \rightarrow S^{k}$ such that $p \circ \hat{\gamma}=\gamma$ and $\hat{\gamma}(0)=x$.

Proposition (Covering homotopy property). Let $y \in \mathbb{R} P_{k}$ and $x \in S^{k}$ with $p(x)=y$. Let γ and ρ be loops at x and $F:[0,1] \times[0,1] \rightarrow \mathbb{R} P_{k}$ be a path-homotopy from γ to ρ. Let $\hat{\gamma}$ be a lift of γ with $\gamma(0)=x$. Then there is a unique lift of F to a map $\hat{F}:[0,1] \times[0,1] \rightarrow S^{k}$ such that $p \circ \hat{F}=F$ and $F(0, t)=\hat{\gamma}(t)$ for all t.

Note that these are similar to the results used to calculate $\pi_{1}\left(S^{1}\right)$.
Show that $p(u)=p(v)$ if and only if $u= \pm v$. Show that if $\gamma(t)=(\cos (t \pi), \sin (t \pi), 0, \ldots, 0)$ then $p \circ \gamma$ defines a loop (i.e a path that begins and ends at the same point) in $\mathbb{R} P_{k}$. You may assume that p is continuous.

Calculate the fundamental group of $\mathbb{R} P_{k}$ for $k>1$.

