Predicting turbulence

T. W. Mattner

12 August 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

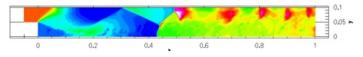
• Turbulence is a state of flow characterised by unsteady, three-dimensional fluid motion over a wide range of spatial and temporal scales.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Turbulence enhances mixing and increases energy dissipation.

• Turbulence enhances mixing and increases energy dissipation.



Dimotakis et al., Caltech

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• Turbulence enhances mixing and increases energy dissipation.

NASA

・ロト ・ 日 ト ・ モ ト ・ モ ト

Navier-Stokes equations

• Mass conservation:

$$\frac{\partial u_j}{\partial x_j} = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Navier-Stokes equations

• Mass conservation:

$$\frac{\partial u_j}{\partial x_j} = 0$$

• Newton's Law:

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 u_i}{\partial x_j^2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Navier–Stokes equations

• Mass conservation:

$$\frac{\partial u_j}{\partial x_j} = 0$$

• Newton's Law:

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 u_i}{\partial x_j^2}$$

• The Reynolds number is

$$Re = \frac{UL}{\nu}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution

Solution

 Clay Mathematics Institute Millenium Problem: Since we don't even know whether these solutions exist, our understanding is at a very primitive level. Fefferman, 2000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution

 Clay Mathematics Institute Millenium Problem: Since we don't even know whether these solutions exist, our understanding is at a very primitive level. Fefferman, 2000

• See http://www.claymath.org/millennium/

Direct numerical simulation (DNS)

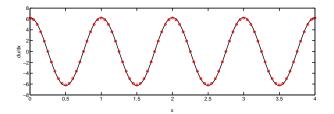
- Use numerical methods to obtain an approximate solution.
 - finite difference
 - finite element
 - finite volume
 - spectral
 - meshless
- Must resolve large and small (fine) scales simultaneously.

Resolution of finite difference schemes

• Let $x_i = i \Delta x$ and $u_i = u(x_i)$, where i is an integer.

$$\left. \frac{\mathrm{d}u}{\mathrm{d}x} \right|_{i} = \frac{u_{i+1} - u_{i-1}}{2\Delta x} + O(\Delta x^{2})$$

• Suppose $u(x) = \sin(2\pi x)$.

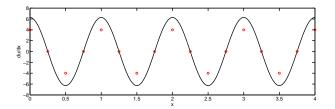


Resolution of finite difference schemes

• Let $x_i = i \Delta x$ and $u_i = u(x_i)$, where i is an integer.

$$\left. \frac{\mathrm{d}u}{\mathrm{d}x} \right|_{i} = \frac{u_{i+1} - u_{i-1}}{2\Delta x} + O(\Delta x^{2})$$

• Suppose $u(x) = \sin(2\pi x)$.

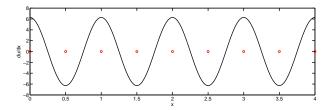


Resolution of finite difference schemes

• Let $x_i = i \Delta x$ and $u_i = u(x_i)$, where i is an integer.

$$\left. \frac{\mathrm{d}u}{\mathrm{d}x} \right|_{i} = \frac{u_{i+1} - u_{i-1}}{2\Delta x} + O(\Delta x^{2})$$

• Suppose $u(x) = \sin(2\pi x)$.



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Scale separation in turbulence

• Let ϵ be the energy dissipation rate per unit mass. It is observed that the finest length scale η depends on ϵ and the viscosity ν . Dimensional analysis implies

$$\eta \sim \left(\frac{\nu^3}{\epsilon}\right)^{1/4}$$

• It is observed that the dissipation is determined by U and L, which characterise the large-scale flow. Dimensional analysis implies

$$\epsilon \sim \frac{U^3}{L}$$

• Thus

$$\frac{\eta}{L} \sim Re^{-3/4}$$

Computational work for DNS

• The number of grid points needed is

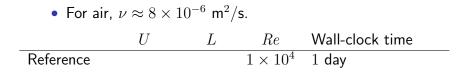
$$N \sim \left(\frac{L}{\Delta x}\right)^3 = Re^{9/4}$$

• The number of time steps needed is

$$M \sim \frac{T}{\Delta t} \sim \frac{UT}{\Delta x} \sim Re^{3/4}$$

• The computational work is proportional to

$$MN \sim Re^3$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For air, $ u pprox 8 imes 10^{-6} \ { m m}^2/{ m s}.$						
	U	L	Re	Wall-clock time		
Reference			1×10^4	1 day		
B747 wing	250 m/s	$0.1 \ \mathrm{m}$	$3 imes 10^6$	74,000 years		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• For air, $ u pprox 8 imes 10^{-6} \text{ m}^2/\text{s}.$							
	U	L	Re	Wall-clock time			
Reference			1×10^4	1 day			
B747 wing	$250 \mathrm{~m/s}$	$0.1 \ \mathrm{m}$	$3 imes 10^6$	74,000 years			
Hurricane	200 km/h	$1 \ km$	7×10^9	9×10^5 billion years			

 For air, 	$\nu \approx 8 \times 10^{-6}$	$m^2/s.$
------------------------------	--------------------------------	----------

	U	L	Re	Wall-clock time
Reference			1×10^4	1 day
B747 wing	$250 \mathrm{~m/s}$	$0.1 \ \mathrm{m}$	$3 imes 10^6$	74,000 years
Hurricane	$200 \ \rm km/h$	1 km	7×10^9	9×10^5 billion years

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The Universe is about 14 billion years old.
- DNS is not feasible for such flows.

Large-eddy simulation (LES)

• Smooth flow variables using a filter

$$\overline{\phi}(oldsymbol{x}) = \int \phi(oldsymbol{x}') \, G(oldsymbol{x} - oldsymbol{x}'; \Delta) \, \mathrm{d}oldsymbol{x}'$$

Apply to Navier–Stokes equations

$$\frac{\partial \overline{u}_j}{\partial x_j} = 0$$
$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial \overline{u}_i \overline{u}_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 \overline{u}_i}{\partial x_j^2} - \frac{\partial T_{ij}}{\partial x_j}$$

• The subgrid-scale (SGS) stress is

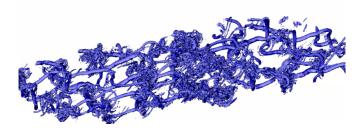
$$T_{ij} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j$$

Subgrid-scale motion

• The vorticity is

$$oldsymbol{\omega} =
abla imes oldsymbol{u}$$

It is related to the rotation of fluid elements.



(日) (同) (日) (日)

An exact solution

- Vorticity is transported by the fluid. It is intensified by stretching and diffused by viscosity.
- An exact solution of the Navier–Stokes equation in cylindrical coordinates (r,θ,z) is

$$u_r = -\frac{1}{2}ar, \quad u_z = az, \quad u_\theta = \frac{\Gamma}{2\pi r} \left(1 - e^{-ar^2/4\nu}\right)$$

This is an axisymmetric solution.

• The vorticity is aligned in the z direction

$$\omega_z = \frac{a}{2\nu} e^{-ar^2/4\nu}$$

An asymptotic solution

Introduce stretched coordinates

$$\rho = e^{at/2}r \quad \text{and} \quad \tau = \frac{e^{at}-1}{a}$$

• The vorticity is

$$\omega_z = \sum_{n=-\infty}^{\infty} \omega_n(\rho, \tau) e^{in\theta},$$
$$\omega_n(\rho, \tau) = f_n(\rho) e^{-in\Omega(\rho)\tau - \nu^2 {\Omega'}^2(\rho)\tau^3/3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The error is $O(\tau^{-1})$

Stretched-vortex subgrid-scale stress model

- Model turbulence as a homogeneous ensemble of nonaxisymmetric stretched vortices.
- Start with the vorticity correlation function

$$W_{ij}(\boldsymbol{\rho}) = \overline{\omega_i(\boldsymbol{x})\omega_j(\boldsymbol{x}+\boldsymbol{\rho})}$$
$$= \int_0^{\pi} \int_0^{2\pi} \int_0^{2\pi} F_{ij} P(\alpha,\beta,\gamma) \sin \alpha \, \mathrm{d}\alpha \, \mathrm{d}\beta \, \mathrm{d}\gamma$$

$$F_{ij} = \frac{\sum_{m} l_m}{L^3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \omega_z^{(m)}(x_1', x_2', t) \omega_z^{(m)}(x_1' + \rho_1', x_2' + \rho_2', t) \times E_{3i} E_{3j} \, \mathrm{d}x_1' \, \mathrm{d}x_2'$$

Stretched-vortex subgrid-scale stress model

• Assume that vortices are aligned with the unit-vector e^v . Then it is found that

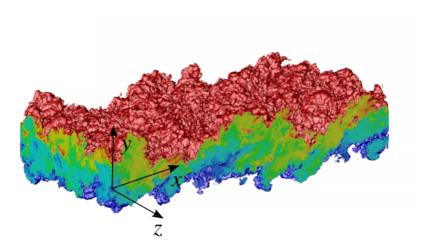
$$T_{ij} = \overline{u_i u_j} = K(\delta_{ij} - e_i^v e_j^v)$$
$$K = \int_{k_c}^{\infty} E(k) \, \mathrm{d}k$$

• For nonaxisymmetric stretched-spiral vortices, it is found that

$$E(k) = \mathcal{K}_0 \epsilon^{2/3} k^{-5/3} e^{-2k^2 \nu/3a}$$

• The parameters $\mathcal{K}_0 \epsilon^{2/3}$, a and e^v are estimated from the resolved-scale flow.

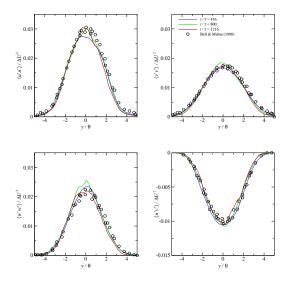
Turbulent mixing layers



▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

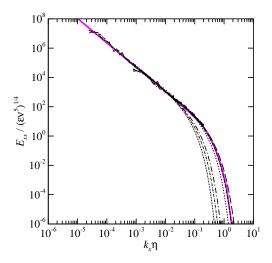
Turbulent mixing layers

Reynolds-stress tensor – cf. Bell & Mehta (1990)



(ロト 4 昼) 4 臣) 4 臣) 臣 - のへで

Velocity spectra



Conclusion

- Turbulence is governed by the Navier–Stokes equations
- It is presently impossible to obtain solutions to high Reynolds number turbulent flows.
- Nevertheless, large-eddy simulations using subgrid-scale models produce statistics that are consistent with experimental data.

- Further work:
 - Variable density flows
 - Reacting flows
 - Multiphase flows
 - Transition

Conclusion

I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about the former I am rather optimistic.

Horace Lamb, 1932