Is the price *really* right?

Sam Cohen

University of Adelaide

Undergraduate Seminar, October 22, 2009

Let X be a the amount of money you might win in a game of chance.

- Q. What is the value of X today?
- A. (First year) It is the amount you would be willing to pay today to win X at a later time.
- A. (PhD Student) E[X] := ∫_Ω X(ω)dℙ(ω), the integral of X with respect to the probability measure, (of course).

Is there a difference in these answers?

Outline

Risk and Expectation Utility Theory and Paradoxes

Hedging and pricing

Risk management

Value at Risk Risk Measures Entropic Risk Choquet integrals

Unanswered Questions

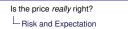
Risk and Pricing

- Today I will talk about pricing, measures of risk and nonlinear expectations.
- Essentially, a key question is: Given a future random payoff X, what are you willing to pay today for X?
- ▶ The converse question is "How *risky* is *X*?".
- We begin with a quick summary of some ways people have answered this question in the past.

-Risk and Expectation

Utility Theory and Paradoxes

- Historically, people first assumed the mathematical expectation E[X] was the 'correct' price for X.
- This is the value that, if the game were played repeatedly, in the long run you would neither win nor lose by playing.
- Small Problem: Which probabilities should we use? (Frequentist/Bayesian???)
- Unfortunately, this doesn't seem to work...



Utility Theory and Paradoxes

Problem 1: St. Petersburg Paradox

- Suppose E(X) is what you are willing to pay today to receive the random amount X.
- Consider the following game:
 - ► Take a fair coin, flip it until a tail appears. Let *n* be the number of heads observed.
 - The random amount you will receive is $X = 2^n$.
 - Hence $E[X] = \sum_{n} 2^{n} \mathbb{P}(n) = \sum_{n} 2^{n} (1/2)^{n} = \sum_{n} 1 = \infty$.
- ► Problem: People are not willing to pay ∞ (or any other large amount) to play this game.

Solution (Daniel Bernoulli):

- People don't care about the amount of money X, they care about the utility of this money u(X).
- u should be concave and increasing

This was then extended by von Neumann, et alii.

We can define the *certainty equivalent* of X: the fixed amount you are willing to trade X for.

$$CE(X) := u^{-1}E[u(X)]$$

Risk and Expectation

Utility Theory and Paradoxes

Problem 2: Ellsberg Paradox

- We have two containers, each containing 100 pieces of paper (red & black).
- Container 1 has 49 red, 51 black.
- Container 2 is unknown.
- A player can choose a container, draw one paper:
 - if red they win, else nothing.

Is the price really right?

-Risk and Expectation

Utility Theory and Paradoxes

Problem 2: Ellsberg Paradox

Empirically:

- Most people choose Container 1.
- Most people would still choose Container 1 if we said they win for black, nothing for red.
- This is inconsistent with any probability of choosing a red piece of paper from Container 2.

Hence CE(X) does not seem to describe behaviour.

-Risk and Expectation

Utility Theory and Paradoxes

Problem 3: Framing

Consider the following two games:

- You give me \$5.
 We flip a coin Heads you get \$10, Tails nothing.
 Call this amount X₁.
- You give me \$0.
 We flip a coin Heads you get \$5, Tails you give me \$5.
 Call this amount X₂.

Clearly these games are the same – so if you like one you should like the other. That is,

$$CE(X_1) \ge 5 \Rightarrow CE(X_2) = CE(X_1 - 5) \ge 0.$$

- Risk and Expectation

Utility Theory and Paradoxes

Problem 3: Translations

For pricing, we want the price to move correctly under translation (ignoring interest rates).

- The price of (X + \$10) should be (the price of X)+\$10.
- If $CE(X) = u^{-1}E[u(X)]$ should give the price,

$$u^{-1}E[u(X+c)] = u^{-1}E[u(X)] + c$$

for all $c \in \mathbb{R}$.

From the Kolmogorov-de Finetti theorem on associative means, this only works if u is linear or exponential.

-Risk and Expectation

Utility Theory and Paradoxes

For these reasons, people have tried various other solutions:

- Markowitz (1952) assumes people only care about the mean and variance of X
- A problem here is that we can construct X₁ ≥ X₂ almost surely, but X₂ be preferred to X₁.

What other approaches are there?

Pricing and Hedging

A fundamental approach to pricing in most of mathematical finance comes through the idea of hedging:

- Consider a random outcome X,
- ► Suppose there is a portfolio of assets with given prices that gives the same payoffs as -X
- Combining this portfolio with X gives a payoff of zero, so should cost nothing
- Then the price of X should be the negative of the price of the portfolio.

- If we know the prices of enough assets to do this for any payoff X, then the market is known as complete.
- Assuming prices in the market are linear, this can be used to create a (unique) probability distribution π such that the price of X is E_π[X], (ignoring interest rates).
- However, this distribution may not be the 'real world' probability distribution.
- Most of mathematical finance (eg. Black-Scholes option pricing) begins with this approach.

Pricing or Risk management?

- This theory is good for pricing, but it doesn't work so well for risk assessment.
- ► Here, we want to know if a risky position is *acceptable*.
- Alternatively, we want to know how much we need to keep in reserves in case of a negative outcome.
- For this problem, we still want translation invariance, but we don't usually want linearity – we want our definition of risk to encourage diversification.

Measures of Risk

- ► We have been discussing how to measure possible winnings (X).
- We now focus on possible losses (-X).
- This is because 'high risk' loosely corresponds to large losses/low winnings.
- Rather than be precise about what we mean by 'risk' we will rather talk about 'measures of risk'.

Is the price really right?	
Bisk management	

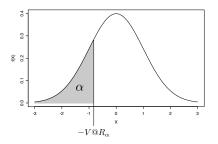
Value at Risk

Value at Risk

We define the Value at Risk at level α (V@ R_{α}) by

$$V@R_{\alpha}(X) = \inf\{x : \mathbb{P}(X < -x) \le \alpha\}$$

(note the -x)



V@*R* has become a standard risk measure, (eg. Basel II, Setroleum industry)

Is the price rea	ally right?
------------------	-------------

- Risk management

└─ Value at Risk

Example: A Dodgy Bank

- Suppose a bank owns a risky asset, with payoff from a N(1,2) distribution.
- The bank has a subsidiary it can share assets with.
- The owner of risky assets must store capital equal to the V@R_{0.1} of their position.

How should the bank proceed to minimise its total capital requirement?

ls	the	price	really	right?
----	-----	-------	--------	--------

- Risk management

-Value at Risk

Option 1: Hold on to the asset

Then the payoff for the bank is from a N(1,2) distribution, and so the V@R is

$$V@R_{0.1} = -\Phi^{-1}(0.1; 1, 2) = 0.8123.$$

Is the price really right?
Risk management

Value at Risk

Option 2: Do some clever trades

Make the following agreements with the subsidiary.

- If the asset pays less than -0.9, the main bank takes it
- If the asset pays between -0.9 and 0, the subsidiary takes it
- If the asset pays above 0, the main bank takes it.

The V@R for the main bank is 0, for the subsidiary is 0.2439.

Is the price really right?
Risk management
Value at Risk

- Using Strategy 2, we have a total capital requirement of 0.2439, as opposed to the 'natural' requirement of 0.8123. Nothing illegal has happened here!
- Therefore, by rearranging the books appropriately, the capital requirement has been decreased.
- More elaborate schemes (with correlated assets etc...) allow it to be decreased further.

Is the price really right?
Risk management
Value at Risk

- Provided all random outcomes are normally distributed, V@R is convex (so this won't work).
- When outcomes are not normally distributed, V@R is not convex.
- Most financial problems involve non-normal outcomes (from options etc...)
- V@R allows the risk to be disaggregated in such a way so as to lower the apparent risk!
- This is counterintuitive and open to exploitation.

Risk management

Risk Measures

Coherent Measures of Risk

Artzner, Delbaen, Eber & Heath (1999) define "Coherent measures of risk":

$$p:L^1(\mathcal{F})
ightarrow \mathbb{R}$$

where

• (Monotonicity) $X^1 \ge X^2$ with probability 1 implies

ŀ

$$\rho(X^1) \le \rho(X^2)$$

- ► (Translations) $\rho(X + c) = \rho(X) c$ for all $c \in \mathbb{R}$.
- (Positive Homogeneity) For all $\lambda > 0$, $\rho(\lambda X) = \lambda \rho(X)$
- (Subadditivity) $\rho(X^1 + X^2) \le \rho(X^1) + \rho(X^2)$

-Risk management

Risk Measures

Convex Measures of Risk

Frittelli & Rosazza Gianin (2002) and Föllmer & Schied (2002) (independently) defined "Convex Measures of Risk"

$$o:L^1(\mathcal{F})
ightarrow\mathbb{R}$$

where

• (Monotonicity) $X^1 \ge X^2$ with probability 1 implies

$$ho(X^1) \le
ho(X^2)$$

• (Translations) $\rho(X + c) = \rho(X) - c$ for all $c \in \mathbb{R}$.

• (Convexity) For all $\lambda \in [0, 1]$,

$$\rho(\lambda X^1 + (1 - \lambda)X^2) \leq \lambda \rho(X^1) + (1 - \lambda)\rho(X^2)$$

Is the price really right?
Risk management
Risk Measures

In many cases, we may want

• (Constants) For all $c \in \mathbb{R}$,

$$\rho(\mathbf{c}) = -\mathbf{c}.$$

Given these assumptions, we can then interpret $\rho(X)$ as

the smallest amount of money that I need to add to a risky position to make it acceptable

where 'acceptable' means $\rho(X) \leq 0$.

Is the price really right	t?
---------------------------	----

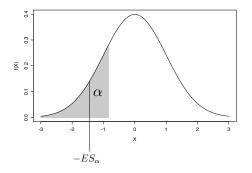
- Risk management

Risk Measures

Example: Expected shortfall

We define the expected shortfall at level α (*ES*_{α}) by

$$\mathsf{ES}_{lpha}(\mathsf{X}) = \mathsf{E}[-\mathsf{X}|\mathsf{X} \leq -\mathsf{V}@\mathsf{R}_{lpha}(\mathsf{X})]$$



Is the price rea	ally right?
------------------	-------------

Risk management

Risk Measures

Example: Expected shortfall

- ► *ES* is a coherent (and convex) risk measure.
- ▶ Despite its advantages, *ES* is less common than *V*@*R*.
- Various computational tools have been developed to estimate both ES and V@R.

Is the price really right?			
Risk management			

Entropic Risk

How to create risk measures?

From a mathematical perspective, we would like a representation of risk measures in terms of simpler objects.

As is common in convex analysis, we *can* find a nice representation here:

$$\rho(X) = \sup_{\mathbb{Q} \sim \mathbb{P}} \{ E_{\mathbb{Q}}[-X] - \beta(\mathbb{Q}) \}$$

where β is some 'penalty' function and the supremum is taken over some set of probability measures absolutely continuous with respect to \mathbb{P} .

- Risk management

Entropic Risk

Example: Entropic Risk

We can define the entropic risk in either of two ways:

$$\rho(\mathbf{X}) = \gamma \ln \mathbf{E} \left[\mathbf{e}^{-\mathbf{X}/\gamma} \right]$$

or

$$\rho(X) = \sup_{\mathbb{Q} \sim \mathbb{P}} \{ E_{\mathbb{Q}}[-X] - h(\mathbb{Q}) \}$$

where

$$h(\mathbb{Q}) = E_{\mathbb{P}}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}\ln\left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)\right] = E_{\mathbb{Q}}\left[\ln\left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)\right]$$

is the 'relative entropy of \mathbb{Q} with respect to \mathbb{P} '.

Is the	e price	really	right?
--------	---------	--------	--------

- Risk management

Entropic Risk

Example: Entropic Risk

The entropic risk has various nice properties

- it is just the negative of the certainty equivalents defined above,
- it has a simple generalisation to multiple time periods:

$$\rho_t(\boldsymbol{X}) = \gamma \ln \boldsymbol{E} \left[\boldsymbol{e}^{-\boldsymbol{X}/\gamma} \, \middle| \, \mathcal{F}_t \right]$$

However, it is also very difficult to estimate without making a lot of assumptions. (It is extremely sensitive to negative outliers in data.)

To create coherent risk measures, an alternative approach is to use the 'Choquet integral'.

Definition

Let ν be a (nice) monotone set function $[0, \infty) \supset \mathcal{F} \rightarrow \mathbb{R}$, then for any (nice) nonnegative function *f*, we can write

$$(C)\int_{[0,\infty)}f\,d\nu=\int_{[0,\infty)}\nu\{s:f(s)\geq x\}\,dx$$

This can also be extended to allow possibly negative-valued functions. If ν is a probability measure, this corresponds with the usual expectation.

If we have a set function ν which is '2-modulating', that is

$$u(\mathbf{A} \cup \mathbf{B}) \leq
u(\mathbf{A}) +
u(\mathbf{B}) -
u(\mathbf{A} \cap \mathbf{B})$$

and if $\nu([0,\infty)) = 1$, then

$$\rho(X) = (C) \int (-X) \, d\nu$$

is a coherent risk measure.

Some applications

Risk measures have been used to study various problems, including

- pricing in incomplete markets,
- financial regulation,
- game theory,
- stochastic optimal control,
- risk-sharing,
- and more to come!

Unanswered Questions

A variety of problems still remain

- How do we generalise these risk measures to multiple time periods in a consistent way (so that we don't keep changing our mind)?
- What types of risk measures can be estimated efficiently/robustly in a model-free way?
- What is the best risk measure to use in practice for problem?

