HONOURS IN MATHEMATICAL SCIENCES
The School of Mathematical Sciences

Suggestions for possible topics
Below you will find some descriptions of Honours projects or areas of staff interest. These are suggestions only and you should also consider talking to staff to find out more about the opportunities for carrying out an Honours project with them.

Dr Sue Barwick

I have supervised honours projects in the area of Projective Geometry, and in the area of Applications of Projective Geometry to Information Security (in particular to Secret Sharing Schemes). Projects in these areas generally involve a literature review. That is, the students use the library to find research papers applicable to the project topic, read the papers and their project consists of a survey of known results about the topic. A prerequisite to work on a project in these areas is the third year subject Fields and Geometry III. Following are brief descriptions of two potential projects in these areas. I am also able to supervise projects on topics in Coding and Cryptography.

k-arcs in Projective Planes

A k-arc in a projective plane is a set K of k points such that no three points in K are collinear. A non-degenerate conic is an example of a k-arc. There is a rich and interesting literature on k-arcs, and generalisations of k-arcs. Some of the questions to be answered are: what is the largest k for which a k-arc exists? What are some constructions of k-arcs? Can we classify k-arcs for certain values of k? There are several different paths that can be followed in this topic, and the student can choose the one they are most interested in.

Geometric Secret Sharing schemes

Suppose we have a secret, a group of people, and a list of subgroups of people (called an access structure) who are authorised to obtain the secret. For example, the secret may be the ability to open a bank safe and the security policy of the bank requires a minimum of 3 tellers to be present to open the safe. We can solve this problem by issuing physical keys, but some access structures can mean that everyone has to carry a large number of keys. A more practical and secure solution is to use mathematics, and it turns out that solutions involving projective geometry are very effective. A project in this area would involve studying how projective geometry can be used to construct secret sharing schemes, as well as looking at ways secret sharing schemes can be generalised.

Professor Nigel Bean

I have supervised honours projects addressing a wide variety of applications using mathematics from the field of operations research (stochastic modelling and optimisation). These applications have been in the areas of telecommunications, scheduling and rostering in industry, auctions and biology. I have also supervised projects that investigate the mathematical ideas that support these applications.

Dr Ben Binder

Mathematical Models in Cell Biology

Hirschsprung's disease is relatively common affecting roughly one in 5000 newborn babies each year in Australia. In Hirschsprung's disease there is no nervous system in the last part of the gut, which means that it cannot support peristalsis. Such a condition produces intractable constipation, which can be fatal unless alleviated by surgical resection of the affected part of the gut. Mathematical models can help in determining the underlying mechanisms that cause the disease.

Both continuous and discrete models are implemented to tackle the tissue growth problem. The discrete model provides results at the level of individual cells, whereas the continuous model predicts properties of the whole cell population. The discrete model also imitates the stochasticity and non-uniformity observed experimentally at the cell level. The key feature of this dual approach is that it provides insight into the interaction between the individual-level and population-level aspects of the tissue growth process.

This project will explore changes to the tissue cell proliferation rule in the discrete model, and deriving the corresponding continuum model. There are no pre-requisites for this honours project.
Flow past a sluice gate
There are many examples throughout the world where infrastructure such as dams, weirs and sluice gates play an important role in controlling the flow of fresh water in rivers and irrigation channels. More specifically, in Australia, the Great River Murray that passes through New South Wales, Victoria and South Australia has numerous weirs, locks and sluice gates that restrict the downstream flow of water toward the sea.

Traditionally sluice gates are wooden or metal plates, which slide in grooves in the sides of a channel. They are commonly used to control water levels and flow rates in rivers and canals. When the sluice gate in the channel is wide, the flow problem can be considered two-dimensional in the neighbourhood of the disturbance centre-plane.

This project will establish the existence of solutions for steady two-dimensional flow past curved and flat sluice gates. There are no pre-requisites for this honours project.

![Fig. 1: Image of a quail embryo.](image1)

![Fig. 2: (a) Tissue cell proliferation mechanism. (b) Initial condition of the discrete model. (c) Typical simulation of discrete model. (d) Space-time diagram of the continuum paths (solid curves) and average values (markers) of the discrete model.](image2)

![Fig. 3: (a) Sluice gates on the River Thames near Henley. (b) Sketch of flow past a flat sluice gate. The two-dimensional flow approximation is illustrated by the broken curves.](image3)

Dr Nicholas Buchdahl
I am happy to supervise Honours projects in the following areas, not arranged in any particular order:

- Complex analysis in one variable
- Complex analysis in several variables
- Differential geometry
- Problems in analysis
- Partial differential equations
- Gauge theory
- Algebraic topology
- Differential topology

In the past I have supervised Honours projects on

- The theorems of H. Cartan on Stein manifolds (Several Complex Variables)
- Topics in Several Complex Variables
- The Riemann-Roch theorem (1 complex variable/partial differential equations)
- Donaldson's theorem on definite 4-manifolds (Gauge theory)
- Constructing constant curvature metrics on surfaces (Differential geometry/Analysis)
- Topics in advanced complex analysis (one variable)
Classification of surfaces
The Uniformization theorem

Associate Professor David Clements

My areas of interest include:

- Numerical solution of partial differential equations
- Flow from irrigation channels
- Mathematical aspects of fracture mechanics
- Earthquake models
- Heat flow in solids

Associate Professor Jim Denier

The Mathematics of the Brain

Ever wondered why you think? No, not why you are here, but how does the brain operate at a most basic and fundamental level? One of the important aspects behind the very process of thinking is concerned with electrical signalling (or firing) of neurons in the brain. It was just this problem that resulted in Hodgkin and Huxley* being awarded a Nobel Prize in Medicine (of all things) for their mathematical model of the neuron firing process. This project will allow the student to explore the Hodgkin-Huxley model (and even simpler models). At its very basic level the project is a study in the area of dynamical systems, exploring such things as bifurcation theory and chaos. At a more ethereal level it will be an exploration into the mind. Either way, it will be a lot of fun and you will learn something useful and interesting along the way.

Freak Waves

The picture below shows a "freak wave" about to break over the foredeck of a cargo ship. This wave was estimated to be 20 metres high. Over the past ten years over 200 super-carriers (cargo ships that are over 200 metres long) have been lost at sea. Many of these losses have been attributed to an encounter with a freak wave. Recent data from the European Space Agency's MaxWave experiment detected ten giant waves (each over 25 metres high) in just a three-week period. These waves are not related to tsunamis. They are thought to result from a self-interaction process between much smaller amplitude waves that occur in the ocean. The interaction process serves to produce the self-focusing behaviour seen in the figure.

This project will allow the student to explore current theories for the generation of such large amplitude, freak waves. It will introduce the fascinating topic of nonlinear waves, how they are generated and how they can be described in a very precise mathematical way. Some background in Differential Equations and Waves would be useful.

Mathematical Models of the Black Death

Infectious diseases are everywhere and many new ones are classified (or simply re-discovered) each year. However, the most deadly infectious disease that has ever been recorded is the Plague (the Black Death) that struck down over a third of the world's population between the 14th and 17th Century. Until recently the cause for this plague been placed at the feet of the bacterium Yersinia Pestis and spread by the fleas of the black rat (Rattus rattus). Recent research suggests that this is not the case; instead the Plague could have been the result of a viral haemorrhagic fever.

This project will explore some of the recent theories regarding the Black Death and its transmission and will consider, in detail, the general problem of modelling the spatial spread of infectious diseases. It will be of interest to any student who would like to
combine mathematical skills with some interesting modelling issues. Although there are no pre-requisites for this project a good grounding in Differential Equations will prove useful.

Drag Reduction

With the success of the Australian Swim team at the Beijing Olympics, drag reduction has become a topic that has moved out of the realms of the aerodynamics industry and entered our every day lives. The "fast suits" worn by our swimmers are designed to reduce the drag the swimmers experiences in moving through the water. The technology behind these swim suits comes from the aerodynamics industry where drag reduction presents a significant economic problem. Put simply, if you can reduce the drag an aircraft experiences then you can save money (and lots of it) on fuel costs. The figure above shows a new type of fast suit by swimsuit maker Tyr that is designed to increase the viscous drag felt by a swimmer when moving through water. The manufacturers believe it provides a higher level of performance when compared to their competitor's fast suits. This claim is contrary to conventional wisdom and presents an ideal topic of investigation for an honours student.

This project will introduce the student to the problem of drag reduction through a study of the topic of turbulence in fluids flows. The project will involve a review of the state of the art in drag reduction technologies and can take a variety of directions depending upon the student's interests and background. Although there are no pre-requisites for this project some exposure to Fluid Dynamics may prove useful.

Dr Matt Finn

Chaotic mixing of fluids occurs in many scenarios, from stirring milk into your coffee, through to homogenisation of scalars in the atmosphere and ocean, such as heat, salt, pollutants etc. Mixing is also vital in multi-billion dollar industries, such as the chemicals industry, where energetic and financial costs involved with thorough mixing can be enormous. Thus understanding the underlying dynamics in mixing processes and improving mixer design is an important area of mathematical research.

A very powerful and elegant way of understanding chaos in mixing flows is by studying their topological properties. The topology of fluid motion can be characterised very concisely using the language of braid groups (see figure 1).

Using relatively simple topological considerations it is possible to predict rigorous lower bounds on mixing quality (according to certain measures). These predictions about flows can then be tested by performing computational simulations and stirring experiments (see figures 2 and 3).
Several projects could be pursued based around these ideas, and would involve a mixture of topology/group theory, flow modelling and numerical simulation work, and even experimental work. The emphasis on these aspects in the project could be tailored easily to suit the interests of the student.

Three specific areas of investigation that would make an interesting and worthwhile project are as follows:

- describing the effects on flow topology of bifurcations of flow periodic orbits (analytical and numerical work);
- automated analysis of mixing flows using a camera and adapting image recognition ideas (a combination of experimental and numerical work);
- describing shedding and interaction of vortices in moderate viscosity mixing flows, and looking at the consequences on flow topology and mixing (an emphasis on flow analysis and numerical work).

Dr David Green

My research interests currently include

Matrix-Analytic Methods

These are fundamental to the analysis of a rich field of Markov processes, which have wide applicability in such things as

- Telecommunications networks
- Network protocols
- Computer systems
- Maintenance and reliability and many other stochastic systems.

Point Processes

In particular the use of Markovian models to model traffic streams, which have direct application to telecommunications systems.

Simulation Modelling

Many real world systems are too complicated to assess performance measures simply using mathematical analysis, and simulation modelling is a powerful adjunct in such cases. I am currently involved with a research venture that uses simulation techniques in the modelling and design of systems for traffic control and provision of quality of service.

Some past Honours projects include:

- TCP congestion control
- Voice over IP
- Mathematics in Bridge

Associate Professor Inge Koch

My areas of research are the analysis of multivariate and high-dimensional data and nonparametric smoothing and regression. I am happy to supervise honours projects in the following areas:

- Nonlinear Principal Component Analysis
- Dimension reduction and dimension selection
- Kernel Principal Component Analysis
- Multidimensional Scaling and Analysis of Distance
- Sliced Inverse Regression and the Lasso
- Cluster Analysis with Applications in Flow Cytometry.

Associate Professor Finnur Lárusson

I am happy to supervise honours projects in complex analysis and the many areas of mathematics that interact with it. An honours topic that I particularly like is the theory of compact Riemann surfaces. It provides an opportunity to meet and apply important ideas from functional analysis, homological algebra, manifold theory, partial differential equations, and sheaf theory in an accessible geometric context. The first goal of a project in this area would be to get to the central theorem on compact Riemann surfaces, the Riemann-Roch theorem. After that, the project could continue in various different directions.

There are many other options, including complex analysis in higher dimensions, differential geometry, topology, and category theory. In recent years I have supervised an honours project on wavelets, a newly developed area within real and functional analysis with applications to image compression; a project about the correspondence between planar trees and so-called Shabat polynomials, involving combinatorics, covering space theory, and complex analysis; a project
on one-dimensional complex tori, also known as elliptic curves; a project about category theory and toposes of graphs; and a project on the so-called Oka principle, which mixes homotopy theory and complex geometry.

If you have an idea for an honours project in pure mathematics that is not mentioned here, feel free to talk to me about it.

Dr Trent Mattner

Vortex models of turbulence

Turbulent flows are characterised by irregular unsteady three-dimensional fluid motion over a wide range of spatial and temporal scales. Turbulence models are needed because direct simulation of many turbulent flows is impracticable. One of the most distinctive features of turbulent flows are fine-scale tube-like regions of intense vorticity. This has led to models of turbulence based on random ensembles of such structures.

In this project, students can explore the fundamental vortical structures that form the basis of these models or develop and test a model of a turbulent flow.

Turbulence in Variable-Density Flows

Variable-density turbulence occurs in a wide variety of situations, including super-novae, combustion, and atmospheric and oceanic circulation. In these examples, turbulent mixing affects many other processes, including nuclear and chemical reactions, dispersion of pollutants, and biological activity. Accurate prediction of variable-density turbulence is therefore essential in order to optimize engineering devices, guide policy, and understand natural phenomena.

The aim of this project is to develop and test computational tools to predict variable-density flows.

Dr Thomas Leistner

I am happy to supervise topics that are related to differential geometry, Lie groups, Lie algebras and their representation theory, general relativity and other areas of mathematical physics.

Differential geometry is an area that is full of interesting topics for an honours project. This includes classical problems from the theory of curves and surfaces, but also projects in Riemannian geometry, or the geometry of space-times. Topics that are related to Lie groups and Lie algebras have a more algebraic flavour. There are many interesting questions about the classical but also to the exceptional Lie groups, their geometry and representation theory.

Both, differential geometry and Lie theory find their applications in the theory of symmetric and homogeneous spaces, and concrete questions about their geometry lead to projects at the interplay of algebra and geometry.

Finally, I also supervise projects that are motivated by mathematical physics and are linked to geometry and algebra.

Associate Professor Zudi Lu

I am happy to Supervise Honours projects in the following areas:

- Time Series modelling in financial econometrics/financial mathematics
- Value-at-risk and quantile regression modelling and application in risk management
- Spatial-temporal econometric modelling with various applications
- Non-linear/ nonparametric modelling and statistical inference theory
Dr Andrew Metcalfe

Drought Indices and Relationship to Global Climatic Indices
The Environment Agency (EA), in the UK, uses a variation of the Standardized Precipitation Index (SPI) used in the USA. The EA index includes a relationship between the standard deviations for all durations and starting months that allows the index to be used continuously for as long as the drought lasts. The project is to compare the practical performance of these two indices, and to investigate other drought indices, and any relationship with global climatic indices such as the El Nino Southern Oscillation. Data for UK, Australia, and maybe USA, will be available. [in collaboration with a hydrological consultant in the USA and Adelaide civil engineers]

Kriging and Co-Kriging
Kriging is spatial interpolation, and co-Kriging allows for additional predictor variables. The project is to assess load-bearing capabilities of consolidated clay in the Adelaide area. Data are available. [in collaboration with Mark Jaksa in Civil Engineering]

Multivariate Extreme Values
The project is to fit various extreme value distribution models for multivariate data to flood data from Namibia. [in collaboration with Peter Adamson, Visiting Research Fellow]

Dynamic Response of a Small Ship
The dynamic response of a small ship is expected to vary with its heading relative to the waves. We have data from such a ship sailing an octagonal course, and there is also scope for a theoretical discussion based on a literature review [data from Professor GE Hearn, University of Southampton].

Comparison of ANN and Regression Models
Artificial neural networks (ANN) are often considered to be over-parameterised. But, they seem to give good results when they are fitted to large data sets and used for interpolation. The aim of the project is to investigate the pros and cons of using ANN, rather than standard regression models, in a hydrological context. Data are available for the Mekong and the objective is to predict the low level flow from the annual flood. Prediction of the low flow is important because farmers use it to decide whether or not to plant a third rice crop

[Data from Peter Adamson, Visiting Research Fellow].

Professor Michael Murray

I am happy to supervise Honours projects in any of the following areas.

- Differential Geometry
- Mathematical Physics
- Algebraic Topology
- Differential Geometry and Statistics
- Lie Groups and Lie Algebras
- Gauge Theories
- Bogomolny Monopoles
- Twistor Theory
- Bundle Gerbes

Professor Tony Roberts

Modelling Floods
Floods are turbulent and flow over complex terrain. We use dynamical systems methods to seek models that account for the small scale turbulent structures while describing the large scale ebb and flow across the land.

Multiscale Modelling
Technologies for engineering systems at the micro and nano scales are rapidly emerging. Currently we are developing mathematical frameworks and software infrastructure for the integration of heterogeneous models and data over the wide range of scales present in most physical problems. Our fundamentally new mathematics is beginning to address the challenges of multiscale simulation.

Noisy PDEs
Noise in real spatial systems is encoded mathematically as stochastic partial differential equations. Their numerical models are very delicate. Dynamical systems theory supports an holistic approach to generate discrete models of such stochastic systems. The resulting models will be much more faithful to the original physical system.

Detect Fractal Geometry
The world around and within us is best described as fractal. Yet the tools we have for detecting fractal nature are biased. Applications, such as detecting abnormalities in neuronal cells, desperately need new effective methods of analysis and characterisation. We pursue a program using the information in all the inter-point distances in the object under study.
The classical explanation of the stripes on a tiger or the spread of a disease are based upon reaction diffusion equations. Yet births induce spatial correlations that also may generate patterns. The motion of so-called Brownian bugs is an introductory example. We need to learn how to model systems where such spatial correlations are maintained for significant times. Science needs to develop techniques to discriminate between whether reaction diffusion models are appropriate or whether long lasting correlations are the key mechanism.

Dr Joshua Ross

I encourage any student with an interest in the area of mathematical and/or statistical modelling, in particular with applications to ecology, epidemiology or population biology, to email me to arrange a time for a chat joshua.ross@adelaide.edu.au

Your research could contribute to the following projects:

New Methods for Active Adaptive Management

Active adaptive management is a management framework that aims to save species from extinction. It balances and optimises all benefits, including those gained by opting for a ‘non-optimal’ management program in the short-term, in order to be able to learn information about the system that will reduce uncertainty and hence lead to improved strategies in the long-term.

A project in this area could look at developing: a new framework for assessing population extinction risk; methods for approximating Markov chain models of population dynamics; efficient methods for calibrating models to population time-series data; methods for sensitivity analysis in ecological modelling and conservation management problems; robust methods for decision-making in the presence of extreme uncertainty; methods for optimal observation of ecological systems; or, applying this framework to specific ecological management problems.

New methods for integrating population structure and stochasticity into infection models.

Models of disease dynamics are now used routinely to inform national and global policy-makers on issues that threaten human health or which have an adverse impact on the economy.

The dynamics of outbreaks such as the global SARS epidemic of 2003, the 2007 national equine ‘flu outbreak and the 2009 swine (H1N1) ‘flu pandemic involve chance and are subject to constraints imposed by the social structure of the population and thence the availability of contacts between individuals that allow transmission. However, integrating population structure and stochasticity into models of disease dynamics is not an easy task.

A project in this area could help develop methods and models that allow us to meet this challenge.

Associate Professor Matthew Roughan

My research interests are in the area of measurement, modelling and management of data networks. Some example projects are listed below, though I am happy to talk about anything in this area.

Non-Gaussian Fractal Traffic Models

Internet traffic modelling is a key ingredient in many network design, and management tasks. In recent years, there has been much research showing that Internet traffic has fractal characteristics. Typical traffic models which incorporate such features are Gaussian processes, with long-memory, such as fractional Gaussian noise. Such processes are now frequently applied, but Internet traffic, while fractal, does not always have a Gaussian marginal distribution. One can distort the marginal distribution to better fit real traffic, but this alters the fractal characteristics of the traffic in a non-linear manner, related to Hermite polynomials. This project would determine methods for approximating particular marginal distributions through non-linear transformations of a Gaussian process, while maintaining the desired fractal characteristics in the traffic.

Network Value at Risk

Network reliability is a key issue for most large Internet Service Providers (ISPs). Providers aim to have downtimes of the order a few minutes a year. Unfortunately, individual network components have nowhere near this level of reliability. Reliability is obtained through redundancy, though at a high cost in terms of duplication. Reducing the cost, while maintaining reliability is therefore a key goal for most ISPs. Interestingly, in the Internet, there are not even
good ways of quantifying overall network reliability. Most metrics that one might apply are limited in some respect. For instance, it is clearly more important to maintain high reliability on core backbone links, than tiny access links, but metrics rarely distinguish the impact of failures at varying levels. Similarly, when a single failure occurs, alternative routes can often be used to transmit traffic, but not in the case of multiple failures.

The aim of this project is to extend ideas from the financial community to this task. In the financial world, there are concepts such as the "value at risk", and "conditional value at risk", which describe the potential damage that is possible to a stock portfolio, given certain stochastic assumptions. In extending these ideas to networks, we might then design a minimum cost network, with a constraint on value at risk.

Search Games
In computer science, one of the most common tasks is a search. For example, one might wish to search a list for a particular element. The binary search is well known to provide a very good solution, when searching a sorted list. However, there are problems where the search involves risks. For example, in network traffic engineering, we may wish to find a routing solution that balances traffic over multiple paths, while satisfying the constraint that we don't send any path more traffic than it can support. Traditionally, such problems are treated as optimization problems, with constraints. However, in some problems, we don't know the constraints initially. These must be estimated by performing the search, for instance, by sending traffic along the paths, and receiving feedback about congestion levels. Unfortunately, in doing so, you may lose traffic to congestion. Thus, we have two objectives in probing -- firstly to gain information in our search for a viable solution, and secondly, to avoid losing too much traffic to congestion. Thus one has a game, in many respects similar to Poker, where one must choose how much to bet, to elicit particular information from other players (about the strength of their hand), while simultaneously placing value at risk. A solution is to generalize the binary search algorithm to the space of possible solutions. We have developed several algorithms that perform such a search, for the traffic-engineering problem. An interesting question, which this project would address, is how widely these methods may be generalized to other problems.

Joint Models of Traffic and Topology
In Internet modelling, two major efforts are proceeding in parallel - the first to model Internet traffic, and the second to model the network topology. Despite great strides in both areas, there has been little understanding of the fact that these two features of a network are strongly related. As network routing changes, so changes the traffic, but also, networks are designed around the traffic they carry, and so are highly correlated to this traffic. There is a strong analogy here to hydrological modelling. For instance, if one examines hydrological data (for instance stream flow rates), one observes self-similar, or fractal behaviour. Such behaviour is also observed in Internet traffic flows. Another parallel is drawn when one considers catchments. The rainfall within their catchment determines river flows, whereas network traffic flows result from traffic generated by users within a catchment. Similarly, the water flows over time can alter the shape of a catchment through erosion, resulting in fractal like landscapes. In the Internet, changes in the traffic flows result in network redesigns that then alter the catchment shapes. Again, much of the recent work on network modelling has noted fractal structure in the design of networks, so the analogy is quite strong.

In the geological world, the changes made to terrain happen over long timescales of hundreds to thousands of years. In the Internet, changes happen overnight, by comparison. Hence, by applying techniques used to model hydrological processes, we may be able to gain some highly practical insights that lead to better models for the Internet.

Professor Patty Solomon

I am happy to supervise Honours Projects in biostatistics, bioinformatics, statistical methodology and applied statistics.

Two Projects available in 2011 are:

Statistical analysis of the Australian and New Zealand Intensive Care Database (ANZICS). Recent studies have controversially suggested an inverse relationship between higher hospital patient-volume and mortality outcome. However, most studies are flawed in design and the statistical analysis is incorrect. This Project will unravel the true relationship between volume of patients and mortality outcomes with application to the Australian data, and will involve comparing random effects models with a generalized estimating equations approach, exploring functional forms for the volume effects using splines and fractional polynomials, the implications of missing data and the use of multiple imputation, and investigating the question of causality.

Statistical analysis of mRNA-seq data. In this Project, you will learn about new (and some not so new) statistical methods in bioinformatics for
the design of experiments, exploratory data analysis, normalisation and assessing differential gene expression in next-generating sequencing data.

Alternatively, if you have a particular area or topic of interest you would like to work on, feel free to discuss this with me.

Dr Yvonne Stokes

My research interests include:

Fluid Mechanics in particular very viscous flows, free-surface flows and computational fluid dynamics.

Industrial and Biological Mathematics in particular modelled by differential equations involving mass and/or heat transfer.

Some possible project topics are indicated below but feel free to discuss other ideas with me.

Viscous Extensional Flows
These are flows that, like honey dripping from an upturned spoon, exhibit, elongation, necking to form a drop suspended by a thin filament, and, finally, pinch-off of the drop and further break-up of the filament. Important application areas include fibre spinning, ink-jet printing, blow moulding, and rheometry. Despite much research over the last century, the mechanism(s) that govern where and when drop pinch-off occurs are still not fully understood. Simplified one-dimensional models as well as computational simulation may be used to examine these types of flow.

Sagging of viscous sheets under the influence of gravity
Gravity sagging of viscous fluid sheets is used in the manufacture of car windscreens and optical lenses; glass sheets or discs are heated so that they melt and flow under their own weight. Mathematical modelling and numerical simulation can be used in place of experiments to determine what shape results from some initial geometrical set-up and for some given temperature distribution. Mathematical modelling is even more useful for solving the even more challenging "inverse" problem of determining mould shape and/or temperature distribution to yield a required product shape.

Nutrient Supply to Eggs and Embryos
Oxygen and nutrient supply to mammalian eggs (see picture below) and embryos affect their ability to develop to full maturity and give rise to healthy living offspring. Knowledge of the nutrient requirements of eggs and embryos is particularly important for improving the success of assisted reproduction technologies and mathematical models are required to determine these from experimental data. Projects in this area involve diffusion equations and their analytic and/or numerical solution.

Flow in Spiral Channels
Spiral-channel flow is important in a number of industrial separation processes, such as helical-coil distillation of petroleum products, separation of liquids of different densities (e.g. oil from seawater), and particle segregation and concentration in spiral separators used by the mineral processing industry.

It also has relevance to flows in rivers. Flows in such curved channels consist of two components: a primary axial flow and a secondary cross flow. The fluid depth is, typically, small making experimental investigation difficult. Mathematical models are therefore of great value for determining how such flows are influenced by fluid properties and geometrical parameters. This project involves thin film mathematics and computational fluid dynamics.
Mr Jono Tuke

Statistical Analysis of mRNA-seq Data

In this Project, you will learn about new (and some not so new) statistical methods in bioinformatics for the design of experiments, exploratory data analysis, normalisation and assessing differential gene expression in next-generating sequencing data. This project will be jointly supervised by Professor Patty Solomon.

Professor Mathai Varghese

I am happy to supervise Honours projects in the following areas:

- Atiyah-Singer index theory of elliptic operators and generalizations,
- Noncommutative geometry,
- Positive scalar curvature metrics - obstructions and existence,
- Spectral theory of elliptic operators and their discrete analogs,
- L2 methods in geometry and topology,
- K-theory and twisted analogues,
- Applications to the fractional quantum Hall effect and string theory.

In the past I have supervised Honours projects on:

- The proof of the Atiyah-Singer Index theorem;
- Cyclic cohomology.