Network Tomography and Internet Traffic Matrices

Matthew Roughan
School of Mathematical Sciences
University of Adelaide

<matthew.roughan@adelaide.edu.au>
Credits

❖ David Donoho – Stanford
❖ Nick Duffield – AT&T Labs-Research
❖ Albert Greenberg – AT&T Labs-Research
❖ Carsten Lund – AT&T Labs-Research
❖ Quynh Nguyen – AT&T Labs
❖ Yin Zhang – AT&T Labs-Research
Problem

Have link traffic measurements
Want to know demands from source to destination

\[
\begin{bmatrix}
- & x_{A,B} & x_{A,C} & \cdots \\
\vdots & \ddots & \ddots & \cdots \\
\vdots & \vdots & \ddots & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
\end{bmatrix}
\]
Example App: reliability analysis

Under a link failure, routes change
want to predict new link loads

\[TM = \begin{bmatrix}
- & x_{A,B} & x_{A,C} \\
. & . & . \\
. & . & . \\
. & . & . \\
\end{bmatrix} \]
Network Engineering

❖ What you want to do
 a) Reliability analysis
 b) Traffic engineering
 c) Capacity planning

❖ What do you need to know
 ➔ Network and routing
 ➔ Prediction and optimization techniques
 ❖ Traffic matrix
Outline

❖ Part I: What do we have to work with – data sources
 ◆ SNMP traffic data
 ◆ Netflow, packet traces
 ◆ Topology, routing and configuration

❖ Part II: Algorithms
 ◆ Gravity models
 ◆ Tomography
 ◆ Combination and information theory

❖ Part III: Applications
 ◆ Network Reliability analysis
 ◆ Capacity planning
 ◆ Routing optimization (and traffic engineering in general)
Part I: Data Sources
Traffic Data
Data Availability - packet traces

Packet traces limited availability – like a high zoom snap shot
• special equipment needed (O&M expensive even if box is cheap)
• lower speed interfaces (only recently OC192)
• huge amount of data generated
Data Availability – flow level data

Flow level data not available everywhere – like a home movie of the network
- historically poor vendor support (from some vendors)
- large volume of data (1:100 compared to traffic)
- feature interaction/performance impact
Netflow Measurements

- **Detailed IP flow measurements**
 - Flow defined by
 - Source, Destination IP,
 - Source, Destination Port,
 - Protocol,
 - Time
 - Statistics about flows
 - Bytes, Packets, Start time, End time, etc.
 - Enough information to get traffic matrix

- **Semi-standard router feature**
 - Cisco, Juniper, etc.
 - not always well supported
 - potential performance impact on router

- **Huge amount of data (500GB/day)**
Data Availability - SNMP

SNMP traffic data – like a time lapse panorama
• MIB II (including IfInOctets/IfOutOctets) is available almost everywhere
• manageable volume of data (but poor quality)
• no significant impact on router performance
SNMP

❖ Pro

❖ Comparatively simple
❖ Relatively low volume
❖ It is used already (lots of historical data)

❖ Con

❖ Data quality - an issue with any data source
 ★ Ambiguous
 ★ Missing data
 ★ Irregular sampling
❖ Octets counters only tell you link utilizations
 ★ Hard to get a traffic matrix
 ★ Can’t tell what type of traffic
 ★ Can’t easily detect DoS, or other unusual events
❖ Coarse time scale (>1 minute typically; 5 min in our case)
Topology and configuration

❖ Router configurations

◆ Based on downloaded router configurations, every 24 hours
 ★ Links/interfaces
 ★ Location (to and from)
 ★ Function (peering, customer, backbone, …)
 ★ OSPF weights and areas
 ★ BGP configurations

◆ Routing
 ★ Forwarding tables
 ★ BGP (table dumps and route monitor)
 ★ OSPF table dumps

❖ Routing simulations

◆ Simulate IGP and BGP to get routing matrices
Part II: Algorithms
The problem

\[y_1 = x_1 + x_3 \]

Want to compute the traffic \(x_j \) along route \(j \) from measurements on the links, \(y_i \):

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3
\end{pmatrix}
=
\begin{pmatrix}
 1 & 0 & 1 \\
 1 & 1 & 0 \\
 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
\]
The problem

\[y_1 = x_1 + x_3 \]

Want to compute the traffic \(x_j \) along route \(j \) from measurements on the links, \(y_i \)

\[y = Ax \]
Underconstrained linear inverse problem

\[y = Ax \]

Traffic matrix

Link measurements

Routing matrix

Many more unknowns than measurements
Naive approach
Gravity Model

- Assume traffic between sites is proportional to traffic at each site

\[x_1 \propto y_1 y_2 \]
\[x_2 \propto y_2 y_3 \]
\[x_3 \propto y_1 y_3 \]

- Assumes there is no systematic difference between traffic in LA and NY
 - Only the total volume matters
 - Could include a distance term, but locality of information is not as important in the Internet as in other networks
Simple gravity model
Generalized gravity model

- Internet routing is asymmetric
- A provider can control exit points for traffic going to peer networks

![Diagram of network connections with labels for peer links and access links.]
Generalized gravity model

- Internet routing is asymmetric
- A provider can control exit points for traffic going to peer networks
- Have much less control over where traffic enters
Generalized gravity model

estimated matrix element

actual matrix element
Tomographic approach

\[y_1 = x_1 + x_3 \]

\[y = A x \]
Direct Tomographic approach

❖ Under-constrained problem
❖ Find additional constraints
❖ Use a model to do so
 ✦ Typical approach is to use higher order statistics of the traffic to find additional constraints
❖ Disadvantage
 ✦ Complex algorithm - doesn’t scale (~1000 nodes, 10000 routes)
 ✦ Reliance on higher order stats is not robust given the problems in SNMP data
 ✦ Model may not be correct -> result in problems
 ✦ Inconsistency between model and solution
Combining gravity model and tomography

1. gravity solution

2. tomo-gravity solution

\[\arg\min_x \left\{ \|y - Ax\|^2 + \lambda^2 J(x) \right\} \]

tomographic constraints
(from link measurements)
Regularization approach

❖ **Minimum Mutual Information:**
 - minimize the mutual information between source and destination

❖ **No information**
 - The minimum is independence of source and destination
 - $P(S,D) = p(S) \ p(D)$
 - $P(D|S) = P(D)$
 - actually this corresponds to the gravity model

❖ **Add tomographic constraints:**
 - Including additional information as constraints
 - Natural algorithm is one that minimizes the Kullback-Liebler information number of the $P(S,D)$ with respect to $P(S) \ P(D)$
 - Max relative entropy (relative to independence)
Validation

- Results good: ±20% bounds for larger flows
- Observables even better
More results

>80% of demands have <20% error

Large errors are in small flows

tomogravity method

simple approximation
Robustness (input errors)
Robustness (missing data)
Dependence on Topology

![Graph showing the relationship between unknowns per measurement and relative errors. The graph includes data points for random and geographic topologies, with linear fits for each. The x-axis represents unknowns per measurement, while the y-axis represents relative errors (%). The graph includes a box with labels for random, geographic, and linear (geographic) topologies. The node labels include 'clique' and 'star (20 nodes).']
Additional information - Netflow

![Graph showing relative error vs. number of known traffic matrix rows for different dates.]
Part III: Applications
Applications

- **Capacity planning**
 - Optimize network capacities to carry traffic given routing
 - Timescale - months

- **Reliability Analysis**
 - Test network has enough redundant capacity for failures
 - Time scale - days

- **Traffic engineering**
 - Optimize routing to carry given traffic
 - Time scale - *potentially* minutes
Capacity planning

- Plan network capacities
 - No sophisticated queueing (yet)
 - Optimization problem

- Used in AT&T backbone capacity planning
 - For more than well over a year
 - North American backbone

- Being extended to other networks
Network Reliability Analysis

- Consider the link loads in the network under failure scenarios
 - Traffic will be rerouted
 - What are the new link loads?

- Prototype used (> 1 year)
 - Currently being turned form a prototype into a production tool for the IP backbone
 - Allows “what if” type questions to be asked about link failures (and span, or router failures)
 - Allows comprehensive analysis of network risks
 - What is the link most under threat of overload under likely failure scenarios
Example use: reliability analysis
Traffic engineering and routing optimization

- Choosing route parameters that use the network most efficiently
 - In simple cases, load balancing across parallel routes

- Methods
 - Shortest path IGP weight optimization
 ★ Thorup and Fortz showed could optimize OSPF weights
 - Multi-commodity flow optimization
 ★ Implementation using MPLS
 ★ Explicit route for each origin/destination pair
Comparison of route optimizations

![Comparison of route optimizations diagram]

- **InvCap weights**
- **OSPF/tomogravity**
- **OSPF/true**
- **MPLS/true**

University of Adelaide
Conclusion

❖ Properties

❖ Fast (a few seconds for 50 nodes)
❖ Scales (to hundreds of nodes)
❖ Robust (to errors and missing data)
❖ Average errors ~11%, bounds 20% for large flows

❖ Tomo-gravity implemented

❖ AT&T’s IP backbone (AS 7018)
❖ Hourly traffic matrices for > 1 year
❖ Being extended to other networks

http://www.maths.adelaide.edu.au/staff/applied/~roughan/
Additional slides
Validation

❖ Look at a real network
 ◆ Get SNMP from links
 ◆ Get Netflow to generate a traffic matrix
 ◆ Compare algorithm results with “ground truth”
 ◆ Problems:
 ★ Hard to get Netflow along whole edge of network
 • If we had this, then we wouldn’t need SNMP approach
 ★ Actually pretty hard to match up data
 • Is the problem in your data: SNMP, Netflow, routing, ...

❖ Simulation
 ◆ Simulate and compare
 ◆ Problems
 ★ How to generate realistic traffic matrices
 ★ How to generate realistic network
 ★ How to generate realistic routing
 ★ Danger of generating exactly what you put in
Our method

❖ We have netflow around part of the edge (currently)
❖ We can generate a partial traffic matrix (hourly)
 ◆ Won’t match traffic measured from SNMP on links
❖ Can use the routing and partial traffic matrix to simulate the SNMP measurements you would get
❖ Then solve inverse problem
❖ Advantage
 ◆ Realistic network, routing, and traffic
 ◆ Comparison is direct, we know errors are due to algorithm not errors in the data
Estimates over time

Traffic matrix element

Date:
- 06/03
- 06/08
- 06/13
- 06/18
- 06/23
- 06/28
- 07/03

Actual vs. Estimated
Local traffic matrix (George Varghese)

for reference previous case

University of Adelaide 47