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Tutorial 6 Solutions

1 Maximizetherange of a missile: Take a missile which has a rocket motor that gen-
erates constant thrugtfor a fixed time interval0, ¢;]. We can control the angle of
the thrus®(¢) (relative to the horizontal). Ignoring drag, the curve af fBarth’s sur-
face (and its rotation), determine the angle profile thakméximize the range of the
missile.

Hints: choose a co-ordinatés, y), and(u,v) = (z,%), then the DEs describing the
system under thrust will be

T = u
=
= fcosf
v = fsinf—g

After the rocket stops firing, the missile will continue onallistic trajectory, i.e., the
remaining motion will be a parabola, resulting in a totahfiridistance of

R(z,y,u,v) =x + ¢ [’I} + v+ ng]
g

wherez, y, u, v are given at the time at which balistic motion commences.
Solutions:

(A). Firstly, note that the problem is of the form maximize

t1
F{ﬁ}:R(w,y,u,vH/ 0dt,
0

i.e., the term inside the integral is zero. The only integrae will get comes from the
Lagrange multipliers that describe the system, i.e.,

H{O, 2,510, Ay Ay s Mo} = Rz, 1, 0)

rty
+ / (T —u) + Ay (G — v) + (@ — feos) + A, (0 — fsinb — g) dt,
0

We get 9 E-L equations, but those with respect to the Lagramgl&pliers trivially
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give us back the system constraints, so focus on the others, i

oh  d oh . .

0 : %_$§ = 0 = A fsinf— A fcosf = 0
oh  dOh ;

o @ 7 =0
oh d oh !
= _ 27 A, = 0

Vigy Tday 07 v

u: %_(_1% = 0 = >\ = =\
ou dtou ¢
oh  dOh :
%7§% =0 = /\1: - 7/\1/

The first equation simplifies to give

tanf = 2.
an >\u
The next two give
Ao = G
Ay =gy

wherec, andc, are constant. The last two equations then give

A = —Cit+cy
A = —gt+oe,

We need to find the constants of integration, so we deternmieenatural boundary
conditions at = ¢;. The terminal cost i$?, so these take the form (for the non-trivial

cases)
I:%+g_ft:n =0 = MNt) = -1
y:%+g_ft:tl =0 = NH) = _\/%72(1,/ —
"”%+%t:n =0 = An) = —E{ +\/#—2gy —a

The first equation gives, = —1, and combined with the third this gives

1 -
A(ty) =ti+ ¢y = —— [7} + v+ ng]
g
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which we can rearrange to give

1 -
cy = —t — 7 |:’U + v+ ng]
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Note thaty can only be positive fof > g, i.e., the thrust is greater than gravity. From

thetanf = u/+/v? + ng‘ which we need to solve fdt, so rearrange thus
t=t1

sinf u(ty)
Likewise cost  /u(tr)? + 2gy(t)
u _ fticosd
¢, = ——— . -
Y V2 + 2gy — t \/[f sind — g]* + g[f sinf — g
uty u 14 v = fcosd
Cy = ———— — — _— inf — sind —
VP gy 9 V2], vifsing 6!]] S0 =g
t= cos
Now a [sinf — g/ f]sin@
sin?0 cos? 0
tanf = I cos2f  [sinf — g/f]sin@
gt sin® 0 [sind — g/f] = cos*0
T et +cy sin'f —g/fsin®0 = (1 —sin?0)?
t—tl—é {v+ 1/'2+ng} u \ = 1—2sin§9+sin49
= X - sind = 1—2sin°6
tftlfl{v+ v2+2gy} V% + 29y 9/fs ,
9 =t —g/fsin®0 = cos20
B sin® @ + / cos20 = 0
Vv + 29y — g
hich i | Hende — cons be d ined b ing the ab There could be more than one solution to the above, we witbsadhe one which gives
rivorlfs IS a constant: Hendé = const, to be determined by solving the above equa- the maximum range. Solve it usifiger o in Matlab and the following two figures

show examples (fog = 9.8, f = 14). Dots show position during thrust (arrows show
thrust direction) at one second intervals, apdigns show the parabolic arc. The two
dashed lines on the right-hand side show the arcs obtaint iangle of thrust is
slightly different, and we can see that the best case is dreraal curve.

The thrust profile has played no part in the above. It only come the solution
when we have to calculate Calculatingd simply requires us to substitute constant
into the system DEs and solve, e.g., for constant thfugie system DEs (along with

2(0) = y(0) = u(0) = v(0) = 0)

T = u

159
) 10
y = v - 120
i = fcosf 5
. 80
v = fsinf—g w0

give the behaviour of the rocket under thrust as
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u = [fcosf]t

v = [fsing— gt Note that the trajectory angle is also constant but a diffezenstant from the thrust an-
5 gle because of gravitational acceleration. We can caletités angle fromurctany/z,

x = [fcos]t?/2

) just as we can now calculate all of the quantities includirgranger.
= [fsinf — g]t*/2

<
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2 Conservation laws: Consider the simple 2D harmonic oscillator, i.e, an osmta
whose kinetic and potential energies are described by

1 /.2 .2
T = é(l*%)

2

w

5(0%*05)-

Vv

(a) Consider whether this system has translation and/atiooial symmetries, and
using Noether's theorem describe the conservation lavtsfigy.

Solutions: The functional of interest is

s = [ iead.d

to

L = T-V
L/ 2y w?,, .
= E(QLJF(]‘z)*?(’IfJng)'

Out of interest, the resulting E-L equations of motion are

10L 0L .. .
o - S =~ wig =0,

and as the solutions to this are simple (independent) sigdsisoeach co-ordinate,
the reason for naming the system the 2D oscillator shouldb®os.

The Lagrangiar is invariant under

e time translations= energy is conserved,
e rotations= angular momentum is conserved.

as shown using Noether’s theorem in the notes. The systent isvariant under
translations iny;, and so momentum is not conserved.

(b) Now transform the system using the transform

1 .
= 5(111*7/(12)
1 .
Ty = 5 (q+ig).
2
Show the the resulting system is invariant under the contisdamiliy of “squeeze”
transforms
X, = €1
Xo = e fmy

and derive the corresponding conservation law.
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Solutions: Inverting the transform we get

1 (21 + x2)

@ = i(x1—x).
Applying the transform to the Lagrangian we get
L =23,%, — 2wz 25,

The obvious point to note is that this Lagrangian is invanarder the transform,
because the exponential factors cancel.

This is a relatively little known form for describing the 2B allator, but it is
interesting to note that the E-L equations are

d oL 0L

df 07‘,’1 01)7

=27, — 2wz, = 0,

which gives thex; as sinusoids, and which can be transformed back into the
original coordinates giving the same solutions.

The transform described, expanded as a Taylor series is

X, = xy4exi+...
X2 = Tg—EX1+...
i.e., it has generators
m o= 1
N = —X2

Noether’s theorem states thatlift, q, q) is variationally invariant ort,, ¢,] un-
der a transform with infinitesimal generatgrandr,,, then

n

Zpkr]k — H¢ = const,
k=1

along any extremal of
t1
F{x} :/ L(t,x,%) &,
to
where

oL S
Pk = 7 H:Z]’kfk*L
oz, p

Here¢ = 0, and so the convervation law in question is

x1p1 — x2py = C, aconstant
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(c) Have we discovered a new conservation law for the systexptain. 3. Solve the following optimal control problem: find the cortfb < wu(t) < 1 that
Solutions: On the face of it this might seem like a new conservation laiterA minimizes T
all, the motions in the new co-ordinate system are still petelent sinusoids, F{u} = / T1U — Tou db
0

and so the above is not angular momentum, or is it?

Note that from the definitiop;, = 2 so subject to the system DEs

oz,
. £ = 1—u
po= 21"2 Ty = m1+1
P2 = 21‘1-,
o Given starting pointx, z2) = (0,0) at time0, and end-poinfz;, z2) = (1, 2) derive
and so the conserved quantity is actually the timeT at which we reach the end-point.
112, — 222, = C/2, a constant Solution:

. . . The Hamiltonian is
This looks much more like conventional angular momentum.

Furthermore, if we transform back to the original co-ordiisaof the system we H = —z1u+ 2zou+pi(1 —u) + pa(21 + 1).
have
1 The Hamiltonian is clearly linear im, and so the control will be a bang-bang con-
o= g (@1 —ig2) troller, with switching function
1 .
= 3 (1 +ig2) 0 =—x1+ Ty —Pi.
T, = % ({}1 — 7;('12) So the control will be
. - 1. . 1 if —x1+x2—p; >0
Ty = 2(q1+"qz)' ui{O if —zy+x9—p1 <0
and hence Considering the two possible cases we can solve the systesnwddet
4ady — 2oty = (@ —ige) (4 + i) — (0 +ig2) (q, — ids) (@) u = 1 the system DEs are

(Il(.h + (I2(.J2 - i(I‘Z(.h + i(Il(.]z - (11(}1 - QZ(IIQ - iQZ(.h +iq (}2

= -2 [(I2('11 + QI('JQ} ) :: _ (IJ1 1
which is just2ix the angular momentum in the original co-ordinates. Heree, t L
conservation law identified is just conservation of angolamentum. so clearly the solution is
Note that it is interesting that in an alterantive co-ordénsystem, the transform, 2 = ¢

and resulting symmetry may appear different, but as we mighttively ex-
pect, no new symmetries/conservation laws of the physigstem are created
by co-ordinate transformation. On the other hand, care meisaken because
symmetries that were otherwise unseen may be revealed by @aerdinate
system, such as the Laplace-Runge-Lenz vector in the draipanet under the
inverse square law of gravity. (b) u = 0the system DEs are

Ty (1 4+ Dt +co

Souz, is constant, and hence in the phase space, the paths acaMéangs with
arrows in the upwards direction.

751:1

.’I/‘.Q = ’I’1+1
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so clearly the solution is

T, = t+cs
Ty = t2/2+((/‘3+1)t+64

Writing z, as a function ofr; we get

2
Ty
zo(21) = 5 + 21 +0c5

wherec; = ¢4 — c2 — c3. So these are quadratic curves in the phase space, where
T, increases withr;.

The problem is linear and autonomous, and the procesa ka2, so it can have at
most one switch point. The phase diagram is shown belowd(sotow show: = 1

and dashed lines = 0) from which we can see the a possible path for the given
end-points (shown as the solid line).
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Note that regardless of the starting and finishing pointeame know that: = 0 or 1,
and the form ofty, 2, in the later case, we can easily calculate the integral,ifi.the
first phase is. = 0 followed by« = 1 the integral is

T
F{u} = / T — Tou dit
0
T
= / T — X dt
T

= / g — (e + 1)t +co) dt

= f(er— et — (er + D27
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Likewise, if the first phase i8 = 1 followed byw = 0 then

[(c1 — )t — (1 + 1)e2/2]
= (c1 — c)ts — (e + 1)E2)2.

F{u}

In the path in the figure we see we start in the phase 0, and then switch to the
phaseu = 1. Itis easy to derive (from the initial point at= 0) thatcs = ¢4 = 0.

The switch point must occur af (ts) = 1, so , we can see that it occurstat= 1, at
which pointzy = 1.5.

We can then derive the constants for the second phase ofimgtie: 1, ande, =
—0.5. From this, we can determine that we will reach the end-patitime7" such that
2o(T) = 2T — 1/2 = 2, namelyl’ = 5/4.

To assess the other possible paths we would go through tremacess and calculate
the integral again to see which is better (in this case thisiebest).

The above omitts consideration of potential singular adafrwhich we could assess
by solving the canonical EL equations to obtain the conj@igabmentum terms, and
checking that # 0.




