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Tutorial 3 Solutions

1. Higher-order derivatives. Go through the steps of deriving the Euler-Poisson equa-

tion for a functional containing derivatives or order three.,
]
Fly} =/ Fa,y, 9 y®,y®), da.
o
Solutions: Let F : C2[zg, z1] — IR be a functional of the form
F{y}—/ fay, vy, y®) da,

wheref has continuous partial derivatives of second order witheestoz, y, v/, 3%,

andy®, andz, < z,. As before, the necessary condition for the extremum isttieat

first variation be zero, e.g.
dF(n,y) =0.

As in lectures we perturb to gety = y + en and apply Taylor's theorem to derive
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So, now the first variation will be given by
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Given fixed-end point conditions

y(z0) = wo ylz) = nm
Y'(x) = wp Y1) =y
¥ (z0) = u ¥ () =
we have
n(zo) = 0 n(@) = 0
n'(@) = 0 n'(z) = 0
@ (zg) = 0 nP(x) = 0
Which gives

[ o[of dof & of & of
) = /w n[aiy7@@+@3y(2) did 9y

0F(n,y) = 0 for arbitraryn satisfying the boundary conditions, so the result is the 6th
order Euler-Poisson equation

of dof & of & of

oy  droy | da2oy®@  dad oy®

. Multiple dependent variables: calculate the form of geodesics in N-dimensional Eu-

clidean space.
Solution: We can parameterize a curve M dimensions by(¢:(t), ¢2(t), . . ., gu (%)),
where they; are the location co-ordinates.

The objective is to minimize the distance along a geodesid,so the functional of

interest is .
1
Flap= [ s

to
but this is not in a suitable form for our derivation. Howewee can rewrite using the
fact that the length of the line segment frerto ¢ + Js is the length of a line segment
from q to q + dq which is approximately

ds = IZ&]?

5q?

= 0t .
ot?

Taking smalldt and integrating we can write the path length as

rt1 "ty
Py = [ as= 7 [S0dar
to to i
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We get one Euler-Lagrange equation for eqach co-ordinatetre objective has no
or ¢; terms, and so

4of _
dz 94, n
for all 7. Simplifying this we get
.q.,; = 0!
and so
¢ = cit +dj,

for some set of constants andd;. This is the parametric form of a straight line, so
the geodesics itV-dimensions are straight lines.

. Multiple independent variables: take a beam lengtti with flexural rigidity ~ and
density per unit length, fixed and clamped at one end, and derive the motion of this
beam when one end is held (displaced from its equilibriunitipoy and then released
suddenly (see figure). NB: = ET whereF is the Young’s modulus, andis the area

of moment of inertia of the beam.

Hints:

e Assume the beam is thin, and it is not bent too far.

e Ignore gravitational potential for the purpose of solvihig{problem, and assume
deflections are small enough that the beam can be modellearnsydering only
vertical deflections, so that we can see the notation thatigpacement of the
beam at distance from the clamp and timeis w(x, t). We will usew, andw,
as shorthand for the relevant partial derivatives.

e The boundary conditions far(x, t) will be

w(0,t) = 0, because the leftend pointis fixed
w,(0,t) = 0, because the left end pointis clamped
w(z,0) = 0, because atthe start the beam is stationary
Wee(d, 1) 0, because the free end point has zero bending moment
w...(d,t) = 0, because the free end point has zero shearing force

where the shapg(z) is determined by the force being applied to the beam before
it is released.

Variational Methods and Optimal Control (VMOC): 2012 4

e You may assume the solution is separable, i.e.,dRatt) = h(z)g(t), i.e., that
we are looking for a “normal mode” of vibration in which alleftomponents of
the beam move with the same frequency and in phase.

Solutions: Ignoring gravity, the two components we need to calculagetlae elastic
potential, and the kinetic energy at each point in time. €lae given by

d 2
p [ Ow
T = | =] dx
/02<at> !
d . 2,0\ 2
VvV = /ﬁ ou dx
0 2\ 0x?
Hamilton’s principle leads us to look for extremal curves of

t1 151 d p K
F{w} = T-Vdt= Lw? — Zw?, dadt.
” o 2 t 9 zT

to

Note that this involves both multiple indendent variab&esd higher order derivatives,
but the extension of the Euler-Lagrange equations shouldaberal. Ignoring zero
terms, the E-L equations take the form

o of 0* of

Ot ow, " 012 0wy 0-

Taking f = Swf — 5w, as in the integral we get the Euler-Lagrange-Poisson emjuati
to be
KWzgapr + pW1 = 0

Now take the separable solutiar{z, t) = h(z)g(t) and we get
Kh® (@)g(t) + ph(x)g"(t) = 0,
Now, we can rearrange this to get

2h9@) )

W) gt

where we tak&? = k/p. As the LHS is constant WRT tg and the RHS is constant
WRT toz, they must both equal a constant.

We start with the RHS, and set the constant tabso the resulting DE is
g" +w?g=0.
The solution to this equation is

g(t) = Acos(wt) + Bsin(wt),
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but att = 0, the beam is held at rest, so
g(t) = Acos(wt).
Clearlyw is the frequency of vibration.
Now take the LHS of the equation and rearrange and we get

2
WO () — “Sh(z) = 0.
a

The solutions of this DE clearly depend on the forth rootsbe w?/a?, and hence
can be written as a linear combinationsaf, cos, sinh andcosh, but it is convenient
to write them in the following form:

h(z) = ¢ [sin(kx)+ sinh(kz)] + ¢ [sin(kz) — sinh(kx)]
+c3 [cos(kx) 4 cosh(kx)] + ¢4 [cos(kz) — cosh(kx)] .

The derivatives oh(x) are

WZ” = c[cos(kz) + cosh(kz)] + c; [cos(kz) — cosh(kz)]
+e3 [ sin(kx) + sinh(ka)] + ¢4 [ sin(kz) — sinh(ka)]
hk(; ) — [ sin(ka) + sinh(kz)] + c3 [ sn(kz) — sinh(ko)]
+ec3 [~ cos(kx) + cosh(kx)] + ¢4 [~ cos(kz) — cosh(kx)]
w = ¢ [~ cos(kz) + cosh(kw)] + c; [~ cos(kz) — cosh (k)]

+c3 [sin(kz) + sinh(kz)] + ¢4 [sin(kz) — sinh(kz)]

Now, from the end-point equations aagh(0) = cosh(0) = 1 andsin(0) = sinh(0) =
0 we get

w(0,t) = 0, = h(0)=0 = c3=0
w,(0,¢) = 0, = K0)=0 = =0
Wee(d,t) = 0, = A'(d)=0
Weez(dyt) = 0, = K"(d)=0

where we must do a little furher work to refine the latter twhey give
¢y [—sin(kd) — sinh(kd)] 4 ¢4 [— cos(kd) — cosh(kd)] = 0
o [— cos(kd) — cosh(kd)] + ¢4 [sin(kd) — sinh(kd)] = 0
We solve by multiplying the top equation by cos(kd) — cosh(kd)], and the bottom
by [— sin(kd) — sinh(kd)] and subtracting (assumirg neq0) to get
[— cos(kd) — cosh(kd)] [— cos(kd) — cosh(kd)]
— [sin(kd) — sinh(kd)] [ sin(kd) — sinh(kd)] = 0
cos?® + cosh? —2 cos cosh + sin® —sinh®> = 0
cos? +sin? + cosh? — sinh? —2 cos cosh +sin?> = 0
cos(kd) cosh(kd) = -1
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When we solve this we find multiple values bf that satisfy the equation, each of
which corresponds to a different mode of vibration. Note &gt the second equations
implies that

cos(kd) + cosh(kd)
@ sin(kd) — sinh(kd)’
so the solution for a particular mode of vibration is
cos(knd) + cosh(k,d)
sin(k,d) — sinh(k,d)
Once we knowk,, we can use a linear combination of vibration modes to mdteh t
initial state of the bent beam, and thence calculate its\neha

The following shows a numerically calculated table of thkiga ofk,,d (obviously to
getk divide byd). We can also use the fact thét= x/p andk* = w?/a? to note that

w=_——4/—
2\l p’
measured in Hz (the division B converts from radians per second to Hz).

Cy =

hn(x) = ¢, | (sin(kpx) — sinh(k,x)) + (cos(knx) — cosh(k,x)).| .

mode kd
1| 1.87510407
2| 4.69409113
3| 7.85475744
4| 10.99554073
5
6
7

14.13716839
17.27875953
20.42035225

The figure below shows the shape of the first few vibration reo@ieese modes don't
have the conventional harmonic structure of a musicalunsént, and so the sound of
such a beam vibrating (e.g., a ruler vibrated on a bench)dsodull and unmusical.
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4. Ritz’sMethod and Higher Order Derivatives: Use Ritz's method to find an approx- Taking the derivative we get
imate solution to minimize the a7
o 0' = 271a,(i® — \?)
Jy} = / y? + \2y% de, Qi —
0 =
wherey(0) = 1 andy(27) = 1 and\ is a positive integer. Use the trial functions Now this can only be true if either; = 0, ori = X (remember that > 0 and ) is a
‘ positive integer) so that
on(z) = cos(nz). yn = cos(\z).
Compare your solution to one found directly from the Eulagtange equations. The Euler-Lagrange equations
Solutions: The test function®, (z) = cos(nz) satisfy the boundary conditions. We P 5
take the approximation dof _of =0
dz dy' Oy
- S ; Doy roxy = 0
yn = Zm(p,(r) = Za,» cos(ix). az Y y =
=1 = Y+ Xy = 0

The derivative is :
whose solution we know to be of the form

N
Yy = — Z a;isin(iz).
=1

Substituting into the above we get

y = Acos(Az) + Bsin(\z),

with A = 1 andB = 0 given by the end-point conditions.

Ty} = /2”1,2 2 de Obviously, given the trial functions, we can only get a gopgraximation to this
Y o 4 4 curve when)\ is an integer (which was the case here). Alfs not an integer, the
or N N solution above suggests the obvious form of trial functioctuding both sin and cos,
= / Z asia;jsin(iz) sin(jz) — A? Z a;ay cos(ix) cos(jx) dx resulting in a Fourier series like approximation, whichhistproblem should give us
0 ij=1 ij=1 an exact solution.
N 2 N 2
= Z a,;mjj/ sin(iz) sin(jz) dr — A2 Z a,aj/ cos(iz) cos(jz) dx
ij=1 0 ij=1 0
Now
27
/ cos(nz) cos(mz)dr = mou,
0
2T
/ sin(nz) sin(mz)dz = o,
0
2m
/ sin(nz) cos(mz)dr = 0
0
So

Hyp = = Z af(i® = \?)




