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Tutorial 2 Solutions

1. Find the extremals of the functionals below subject to thedignd point conditions
prescribed.

/2
(@. / (y> +y? —2ysinz) do;  y(0)=0,y(r/2) =3/2.

O [ L =0 -1

IB
(©). /0 (xy +9”) dz;  y(0) =1,y(2) =0.

Solutions:
(a) With

flz,y,y) =v* +y? —2ysinz,
the Euler-Lagrange equation

of _ 4 of
oy~ dz Oy
becomes d
2y — 2sinx = — (2y
y = 2sinz = - (2/)
or

y' —y=—sinz.

The complementary function (solution of the correspondingrogeneous equation)

IS
y = Ae® + Be™".

For a particular integral, try = C'sinz. Then
—Csine —Csine = —sinz,

soC = 1/2. Hence the G.S. to the E-L equation is
. e, 1
y = Ae® + Be ‘-‘:—551111‘.
The fixed end poing(0) = 0 providesB = —A, so
_ A xT —x 1 x
Y= (e —e )Jrismx.
The end poiny(r/2) = 3/2 gives

y:A(e”/zfe_”/2)+%:7
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and so 1
A= 0.
Therefore
et — e F N 1. sinh(x) n 1.
= —sing = ———— + —sinz.
Y=ah _—¢=r T3 sinh(r/2) = 2

(b) Since f(z,y,y') = y"/x* doesn't involvey explicitly, a first integral to E-L is
Of /0y’ = const. or

Integration yields
Cz*
=—+D.
Yy 1 +
Sincey(1) = 0, we have$ + D = 0, so
V=7 (« = 1)
andy(2) = 15 gives
C
15=—(16—-1).
5= (16-1)
HenceC/4 =1and
y=a'—1.

() Sincef(z,y,y') = zy’ + y? doesn't involvey explicitly, a first integral to E-L is
df /0y’ = const. or

z+2y =C.
Integration provides
C 22
=—z—=—+D.
y=Rte gt

Asy(0) =1, we haveD = 1 and

andy(2) = 0 now gives

orC' = 0. Hence
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2. Can light bend along a circular arc, purely through refmt® Explain your answer. from which we derive
Solutions: y T—a
y = -
Fermat'’s principle of least time (1661) states that a bearlight propagated in a y—>b

medium having a velocity of light gradient, i.e. a refraetindex gradient, travels

1+y? = 1+

along a path between two points that takes a minimum time. (y — b)?
Chooser(y), the speed of light at point, such that time elapsed by passage of light _ (z —a)* + (y —b)*
between two fixed points is a minimum on these arcs, with &gpeall possible paths (y —b)?
connecting the two points. _ R?
The total time elapsed along a path is (y —b)?
"B ‘B vy \/1—/2 1+y? = + n
T{y(x)} = / dt = / ——ds= / VI g -0
Ja Ja ) Joo  cly)
Here f is not explicitly dependent of, so we can form So we can choose y—b
cly) ==
N . bR
H(y.y) =y oy f= N Ty ky = const with the result that light traveling from poirtt — R, b) to (a + R, b) will traverse a
) circular arc.
Multiplying by /1 + "> we get A
y
1 12 (1 + y/Z)
- = k1 +y?
W ey VT
and so
oly) = ~——
I kiy/1+y”
Now if we require the light rays to be on circular arcs, thennged to define a circle
that lies on the start and end point. To make life easy, wd shabse end points
that lie on the circle, with radiu®, and centefq, b), €.9.,(xo, yo) = (¢ — R,b) and
(z1,91) = (a + R, ), then we get
(x—a)?+(y—b)? =R It may seem unreasonable to suggest that the speed of lighteg continuously, but

it does exactly that. For instance, the speed of light inesia function of temperatire,
pressure, and wavelength is given (D. R. Linde. CRC Handlbd@hemistry and
Physics. CRC Press, 1995).

Differentiating with respect te gives
20r —a)+2(y—b)y' =0
(n—1)-10® = 8342.13 + 2406030(130 — o*)~! + 15997(38.9 — o) !
where

o = 1/X, where\ = wavelength inum,
Temperature in degrees C
p = pressureinV/m?.
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and if T # 15 degrees, op # 101.325 kP then(n — 1) above is multiplied by 3. Find the geodesics of a right circular cone? Also find shtpeth transversals

from the top of the cone (a circle at heigh) to any point on the cone.

p(1 4+ p(61.3 —T)-1071)
96095.4(1 + 0.0036617)

We see this type of affect at work above a road heated by the tumair near the
roadway is hotter, and hence light is bent. The results &enihages of “water”
common on Australian road. It isn’t really water you can $e# rather the refracted
light from the blue sky.

We can derive other formulae for other types of EM radiatand this likewise
causes light to bend, e.g., the lonosphere’s “reflectiomadfo-waves is actually a
similar type of refraction.

The circular solution is slightly strange. After all, théseno asymmetry in the
problem, so why would light, travelling directly upwards(at, yo) = (a — R,b) go
to the right, instead of the left? The answer lies in two detae haven't considered
carefully. First, the question implicitly asked using the\Cformalism is not “What
is the arc light takes from the start point?” It is actualliy/hat would the path be
between A and B?”

Secondly, note that in the formulation above, the speedjbf &ty = b is zero, so we

can't actually start at the point where we are travellingieatly upwards (because ) ) . .
light would not be moving at this point). Methods for solution: consider the general Spherical Polar Coordinates

Euler-Lagrange equations of geodesics from
Lecture 6, or adding an extra constraint de-
scribing the surface as in Lecture 13, but we
Finally, what isk, here? shall use a direct approach.

Define the right-circular coné& to have its
axis coinciding with the>-axis, and letx =
const be half the angle at the vertex.

First change to alternative spherical polar co-
ordinategr, 6, ¢), (Physicists use this form).

Solutions:

Thirdly, in support of the last point, in formulating the ptem we assumed we could
write y andy’ as functions ofc, which is not the case if = cc.

(r,0,q)

x = rcos(f)sin(¢)
y = rsin(0)sin(¢)

rcos(o)

z

In the coordinates, the cone is represented
the constraint

¢ = a = const.

And a curvey is given by

o= 6,0)




Variational Methods and Optimal Control (VMOC): 2012 7

The length of a curve between poidtand B is

B B T
L{6(r)} = /A ds = /A %dr = / /14 r2sin®(a)62 dr

because (from the Chain Rule)

dz = %dﬁ + l(/) + —dr = —rsin(f) sin(@)df + r cos(0) cos(¢)d¢ + cos(8) sin(¢)dr
dy = dy d0 + %dqﬁ + = d = rcos(0) sin(¢)dd + rsin(0) cos(¢)do + sin(0) sin(¢)dr
dz = 32 —di+ 02 —do+ %d = —rsin(¢)d¢ + cos(¢)dr

00 o) or
but note that for the con@, = const, sod¢ = 0 and so

ds?

da® + dy? + d2*
= 7r%sin?(0) sin®(4)do? + cos®(0) sin®(¢)dr? — 2rsin(6) sin(¢) cos(d) sin(¢)d6 dr
412 cos?(0) sin®(¢)d6? + sin®(6) sin®(¢)dr? + 2r cos(0) sin(e) sin() sin(p)do dr
+ cos*(¢)dr?
= (cos®(0) sin®(¢) + sin®(0) sin®(#) + cos®(¢)) dr® + r* (sin*(6) sin®(¢) + cos*(6) sin*(¢))
= dr? 4 r*sin’(¢)d6?

ds do\?
—_— = 2 gj 2 —_—
o ¢1 + r2sin?(¢) <dr)

where¢ = a. We wish to find the curve which minimizesL{6}, so we use the
Euler-Lagrange equation (where hgfite, ¢') is independent of, so the
Euler-Lagrange equation

. d ., d
fe—ﬁfe'—o = Efe'—o
and therefore
72 sin?(a) @’

= ————— = [y =const
o 1+ r2sin*(a)0? !
= rsin®(a)f = kiy/1+r2sin®(a)0?
= risint(@)0? = k% (1+7? sinz(a)W)2
= (r*sin®(a) — kir?sin®(a)) 07 = ki
= r’sin’(a) (r*sin®(0) — k1) 0% = ki
k’2
= 9/2 — 1
r?sin’(a) (r2sin®(a) — k3)
do ky
= — =
dr rsin(a)y/r?sin?(a) — k?
= 0+ky = h dr

sin?(a) J /72 — k3/ sin’(a)
= 0+ky = ! sec! <rs1n(a)>

sin(a) k1
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Changing the constants = k;/ sin(a) and B = ks sin(a) we get

r = Asec[fsin(«) + B

Note that, the above solution may admit multiple curveshedavhich may be a
local minimum, but not a global minimum!

Another approach to the solution is transform the surfagertwre familiar surface
(see Lecture 7), and exploit invariance of the E-L equatiorder the transformation,
e.g., unwrap the cone, to get a segment of a flat circle. Gasdes the circle are
straight lines, and so geodesics on the cone may be obtayrteaisforming the
straight lines on the circle segment onto the surface of a.cbhis approach is very
similar to that above, except we rotate the coordinatesatonth start with geodesics
of the form

X:C‘l

where (X,Y) are coodinates on flatten
cone, and note that to get to coordinates
the surface of the rolled up cone we need {
polar coordinates in the plane, but we can
tate these coordinates so that the line is ps
lel to they-axis, e.g.X = ¢; = const.

R = VX2+Y?

= 4/A+Y?

A = tan H(Y/X) = tan 1 (Y/cy)
= tan"'(y/R? — }/c1)

and convert these to spherical-polar coo

nates on the cone. The transform is

r = R
» = «
0 = M sin(a)+ 8

where is the amount by which we rotated

the original( X, Y') axis.

The equation fof) comes from the fact that as we roll up the cone, the outer
circumference of the circular part must map to the top cio€lthe cone, and so an
angle) in polar coordiates in the plane, will be reduced by a facfdhe ratio of the
circumferences of the circles, by sin(«).

Now note that

(/72 i
tan1(z) = { sec (Va2 4+ 1), if x>0

—sec (Va2 +1), ifz<0
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so we can write (for positive arguments)

A= tan"! <VR;C%> — tan™! (W) = sec™! (R/e1)

which results once again in

1 _
0—p= sin(a) sec ' (R/cy)

where in this case, the constants are immediately definekdebgaordinates of the
start and end-points in tHe{, Y') plane.
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4. The Beltrami identity states that the extremal functionhef integral

H{u} = /bL(x,u,u’) dx

satisfy the differential equation

d L\ 0L

Please prove the identity using the Euler-Lagrange equetad the chain rule. Note
that as a special case, whéroes not depend ony we get the equation for the
autonomous case, i.d4, = const.

Solutions: Take the derivative of. with respect tar and apply the chain rule, i.e.,
AL _ OLdr  OLdu L
Ordr Oudr Ou dx

dz
= %+8Lu/+a—Lu/'
T 9z | Ou ou'
oL , dL dL L ,
W T W o ow @

Multiply the Euler-Lagrange equations hyand we get
o d oL 0L

dx ou’ " ou
Substitute (1) into the Euler-Lagrange equation

0

,d oL dL oL 0L ,

Cawow dx oz Tow? T O
A 0L ), oL
dx u(’)u’ or

which simply rearranges to give the Beltrami identity.
Notice that wherl. does not depend or then

oL
i
and so the identity reduces to
L
H= u/a— — L = const.

ou’
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5. Newton’s aerodynamic problem (the problem of finding théame of revolution
that minimizes drag) is often approximated by assuming hiaps is long and thin, so
thaty’ is large (and negative). In this case we can approximate

1 - 1
1+y/2 _y12

and the functional of interest by

Ry
F{y}z/ —
o Y

Derive the shape that arise from minimizing this functional
Solution: The Euler-Lagrange equations are

dof Of _ ,dz _
de oy Oy  Tdxy®
So we get
y/ :(31.”1?1/3

Integrating and calculating the constants we get
y=—L(z/R)"* + L.

We can calculate the drag for the approximate functional as

R 2p8/3 (R 3 p8/3 3 pd
R s PR 3R

ol — . 1/3 247377
Fiy} _/0 Y2 dr = A2]2 /0 LY [2*°]y = B2

However, we must remember that the actual functional{ig} = fOH' 7z de, and
the above is an approximation, which is not valid when thesromsie becomes blunt.

The function describing the nose-cone shape is usuallygaletith thez-axis as the
centerline of the nose-cone, so
g(x) = R(z/L)**.

This solution is one of the standard approximations to tledymamic nose-cone
problem, oddly enough called a “parabolic” hose cone, froenfamily of

g(z) = R(z/L)*, «€][0,1.0].

The resulting power-law shape is appealing because itsteaaw, and easy to
calculate the functional. Note that the family includeshent faced cylinder and the
cone as special cases as well as the solution above.

The following figure compares its optimality when used in tin@pproximated
functional. The optimal curve is on the left, and we can séasta much lower
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resistance. They would be much closé jfR were bigger (and hence slopes were
larger), but even so we can see the value of our exact solution

F=0.187 F=0.217
1] 1
0.8 0.8
0.6) 0.6)
0.4 0.4
0.2 0.2
CO 02 04 06 08 1 G0 02 04 06 08 1

The shape doesn't satisfy a common requirement for suchaurses that they be
tangent to the base cylinder where they touch, but we havesilty considered that
constraint yet (and Newton’s solution doesn’t meet thiteda either).




