
Variational Methods and Optimal Control
Numerical Questions

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

Some numerical questions and examples:

1. Approximation: In many applications, we want to approximate a piece-wise continuous functionR(x) with a smooth
curve. For instance:

• it is common to compile histograms of a set of data, but a typical pltted histogram can look artificially “blocky”;

• in many signal processing applications we will have a signal(often sampled at discrete time intervals), that
contains noise, and one method for removing white noise is tosmooth the data.

We can approximate a piecewise constant curve arbitrarily closely, but the cost is the slope of the approximating
function may become arbitrarily large. The resulting approximation won’t look any smoother than the original.

To obtain a “smoother” approximation, we need to constrain the derivative of the approximation function in some way,
but a fixed constraint|y′| ≤ c would be rather rigid. Instead let us solve the optimizationproblem to minimize

F{y} =

∫ b

a

γ2(y −R)2 + y′
2
dx,

over the interval[a, b], with y(x) free at each end point, where the parameterγ allows a trade off between degree of
“smoothness” against a closer fit to the original.

Solution: The Euler-Lagrange equations are

d

dx

∂f

∂y′
−

∂f

∂y
= 2y′′ − 2γ2(y −R) = 0.

So to find our approximation we need to find the solution to

y′′ − γ2y = −γ2R(x),

for piece-wise constant functionR(x). The solution to the homogeneous DEy′′ − γ2y = 0 is

yh = Aeγx + Be−γx.

Break the interval[a, b] into the segments whereR(x) is constant, i.e., take a series of pointsa = x0 < x1 < · · · <
xn = b whereR(x) = ci for all x ∈ [xi, xi+1), then on each segment the DE will have particular solutionyi = ci and
so on that segment we get

yi(x) = aie
γx + bie

−γx + ci,

y′i(x) = aiγe
γx − biγe

−γx,

and the constantsai andbi will be determined by the end-points (which are not known foreach segmenta priori).

To find the actual approximating curve we have to piece together a series of such segments so that

(a) the end-point values all match so the curve is continuous,
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(b) the derivatives match at the end points, so the curve is smooth, and

(c) the natural boundary conditions (where here are equivalent toy′ = 0 at the boundary) are also satisfied.

The result will be our smooth interpolation of the piecewiseconstant curve.

In detail, at each pointxi for i = 1, 2, . . . , n− 1 we get a pair of conditions

yi−1(xi) = yi(xi)

y′i−1(xi) = y′i(xi)

which is 2(n − 1) conditions + the two natural boundary conditions where we have 2n unknowns (the(ai, bi) for
i = 0, . . . , n− 1). Using the form of the solutionyi in our answer we get

ai−1e
γxi + bi−1e

−γxi − aie
γxi − bie

−γxi = ci − ci−1

γ
[

ai−1e
γxi − bi−1e

−γxi − aie
γxi + bie

−γxi

]

= 0

for i = 1, 2, . . . , n− 1, and the natural boundary conditions

a0e
γa − b0e

−γa = 0

an−1e
γb − bn−1e

−γb = 0

We have2n linear equations in2n unknowns. Solving gives the co-efficients we need to obtain the solution.

For an example, see Figure 1, which shows the approximationsfor three differentγ values.
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Figure 1: Approximations for three differentγ values.

Remarks: We can obviously generalize this method to deal with approximation of curves that are piecewise linear, or
for interpolating a function which we only know at some points.

Moreover, the method above is also a special case of a more general class of smoothing and approximation algorithms.
In general, we are seeking to minimise somedistancebetween our approximation and the original function, whilealso
meeting some smoothness criteria. In general we might writethis as find the curvey that minimises

F{y} = γdz{y}+ I{y},
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whered is a distance metric between the original functionz and the approximationy, andI(·) is a function that
measures the irregularity, or lack of smoothness ofy. In the case above, both of these are integrals:

dz{y} =

∫ b

a

(y − z)2 dx,

I{y} =

∫ b

a

y′
2
dx.

However, we could replace these with alternatives.

• We could measure irregularity by minimizing curvature of the aprpoximating functiun, as measured by

I{y} =

∫ b

a

y′′2 dx,

or with higher-order derivatives, or different powers, or some combination thereof.

• We can use different powersp in the distance function (corresponding to theℓp-norm distance. We could also
measure the distance only on a set of sample pointsxi, e.g., we could take a function

dz{y} =
∑

i

(

y(xi)− yi
)2
.

• We can replace either of the two optimization criteria with hard constraints, e.g.,|y′| ≤ 1, or y(xi) − yi = 0,
which can be incorporated into the problem in the usual way.

Particular combinations of these two result in well-known special cases:

• If we require thaty(xi) = yi, e.g., we require the curve to matchR(x) at the grid pointsxi, and minimize
curvature of the approximation should be minimal, then the Euler-Poisson equations are

y(3) = 0

subject to the constraints, so the curves will be piece-wisecubic. This leads naturally to interpolating splines.

• Smoothing splines arise if we aim to minimize

F{y} = γ
∑

i

(

y(xi)− yi
)2

+

∫ b

a

y′′2 dx.

As γ approaches 1, we approach the interpolative splines above,whereas, whenγ approaches zero we obtain a
linear-regression to the data.

• De Boor extended this to allow for weights on each data point,and higher-order derivatives, e.g.,

F{y} = γ
∑

i

(

y(xi)− yi
δi

)2

+

∫ b

a

y(m) 2 dx.

The critical point is that nearly all of these “smoothers” can be derived from the calculus of variations.

The choice of smoothing parameterγ is a hard problem in general and is often a little arbitrary, though in specific cases
there may be methods to choose it quantitatively, based on known issues such as the level of noise in a dataset.
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Matlab code: for performing calculating the co-efficients for an arbitrary piece-wise constant function is included
below:

function [a,b,c] = approx_function(x_0, x_n, x_i, R_i, gam ma)
% file: approx_function.m, (c) Matthew Roughan, Thu Oct 28 2 010
% created: Thu Oct 28 2010
% author: Matthew Roughan, matthew.roughan@adelaide.edu .au
%
% R is a piece-wise constant function which we wish to approxi mate
% with minimal deviation, and slope, i.e., minimize
% \[ F\{ y \} = \int_{a}ˆ{b} \gammaˆ2 (y-R)ˆ2 + y’ˆ2 \, dx , \]
%
% input:
% x_0
% x_n = the function R(x) is defined on [x_0, x_n]
% x_i = a nx1 vector of the x-values where the function R change s
% x_i(1) = x_0
% but x_n is not included in the vector x_i
% R_i = a nx1 vector of the values of R(x) on each sub-interval
% gamma = the tradeoff parameter between fidelity to the func tion and the
% allowed slope of the approximation
%
% outputs:
% the optimal approximation function takes the form
% y_i(x) = a_i eˆ{\gamma x} + b_i eˆ{-\gamma x} + c_i
% on each interval [x_i(i), x_i(i+1)]. The outputs of the fun ction are vectors of
% the coefficients a_i and b_i
% a = a nx1 vector of the coefficients of a_i in the above approx imation
% b = a nx1 vector of the coefficients of b_i in the above approx imation
% c = a nx1 vector of the coefficients of c_i in the above approx imation (here c_i = R_i)
%
n = length(x_i);

% check inputs
sx = size(x_i);
sR = size(R_i);
if (sx(1) == 1 & sx(2) > 1)

x_i = x_i’;
elseif (sx(1) > 1 & sx(2) > 1)

error(’sx should be a nx1 vector’);
end
if (sR(1) == 1 & sR(2) > 1)

R_i = R_i’;
elseif (sR(1) > 1 & sR(2) > 1)

error(’sR should be a nx1 vector’);
end
if (sx(1) ˜= sR(1) | sx(2) ˜= sR(2))

error(’x and R should be the same size’);
end
if (x_0 ˜= x_i(1))

error(’we should have x_i(1)=x_0’);
end

% temporary variables
c = R_i;
d = exp(gamma * x_i);
e = exp(-gamma * x_i);

% set up continuity equations at (n-1) joins x_i(2:end)
% a_{i-1} eˆ{\gamma x_i} + b_{i-1} eˆ{-\gamma x_i} - a_{i} eˆ {\gamma x_i} - b_{i} eˆ{-\gamma x_i} & = & c_{i}
% matrix A1 are coefficients for the a_i
% matrix B1 are coefficients for the b_i
% y1 are the right-hand side terms of the equations (c_{i} - c_ {i-1)
A1 = zeros(n-1,n);
B1 = zeros(n-1,n);
for i=1:n-1

A1(i,i) = d(i+1);
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A1(i,i+1) = -d(i+1);
B1(i,i) = e(i+1);
B1(i,i+1) = -e(i+1);

end
y1 = [diff(c)];

% set up continuity equations for derivatives at (n-1) joins x_i(2:end)
% \gamma \left[ a_{i-1} eˆ{\gamma x_i} - b_{i-1} eˆ{-\gamma x_i} - a_i eˆ{\gamma x_i} + b_i eˆ{-\gamma x_i}
% matrix A2 are coefficients for the a_i
% matrix B2 are coefficients for the b_i
% y2 are the right-hand side terms of the equations (zero in th is case)
A2 = zeros(n-1,n);
B2 = zeros(n-1,n);
for i=1:n-1

A2(i,i) = d(i+1);
A2(i,i+1) = -d(i+1);
B2(i,i) = -e(i+1);
B2(i,i+1) = e(i+1);

end
y2 = zeros(n-1,1);

% complete set of constraints at the joins
A = [[A1, B1]

[A2, B2]];
y = [y1; y2];

% add in natural boundary conditions at the edges
% natural boundary says y’=0 at x_0 and x_n
A = [[exp(gamma * x_0), zeros(1,n-1), -exp(-gamma * x_0), zeros(1,n-1)];

A;
[zeros(1,n-1), exp(gamma * x_n), zeros(1,n-1), -exp(-gamma * x_n)];

]
y = [0;y;0]

% solve the equations to find ’coefficients’, which consist s of
% coefficients = [a; b]
% where a = [a_i], and b=[b_i] and A * coefficients = y
coefficients = A \ y;
a = coefficients(1:n)
b = coefficients(n+1:end)
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2. Catenary:

The shape of a hanging chain of lengthL was presented as the solution of the problem of minimizing potential energy

Wp{y} = mg

∫ x1

x0

y
√

1 + y′2 dx,

under the isoperimetric constraint

G{y} =

∫ x1

x0

√

1 + y′2 dx = L.

assuming the (given) heights of the pylonsyi = y(xi) > 0.

We determined that the solution to this problem took the form

y = c1 cosh

(

x− c2
c1

)

− λ,

where the constantsλ, c1 andc2 are determined by the lengthL of the chain, and the end conditions, i.e., the heights
of the polesy(x0) = x0 andy(x1) = x1.

Determine:

(a) the infimum of possible lengths of chain, and

(b) the maximum length before the chain drags on the ground (at heighty = 0).

Solution:

(a) The minimum length of the chain is not well defined becausealthough the minimum distance (along a straight
line) is well defined, a chain cannot take this shape (except in the limit as tension in the chain goes to infinity).
Hence we use the term infimum, which can be thought of as thegreatest lower bound.
Formally, theinfimumof a subsetS of some partially ordered setT is the greatest element ofT that is less than or
equal to all elements ofS. Here, the setT is the set of all curvesy(x) with two continuous derivatives, that satisfy
the end-point constraints. The ordering is based on the lengths of the curves, and the subsetS is the set of all
catenaries. The infimum of the lengths will simply be the length of the straight line between the two end-points,
because we know that we can get a catenary arbitraily close tothis line. Hence

Linf =
√

(x1 − x0)2 + (y1 − y0)2.

That is, even though we can’t have a catenary which is a straight line, it forms the greatest lower bound on the
lengths of the catenaries, i.e., the infimum.

(b) We can calculate the maximum length, by noting that the chain will only drag on the ground if its minimum height
ymin < 0, so the maximum chain length will occur whenymin = 0. Note that

y = c1 cosh

(

x− c2
c1

)

− λ

y′ = sinh

(

x− c2
c1

)

,

which has a zero atx = c2. So there are three possible locations for the mimimum – the two edges, or the
stationary pointsy′ = 0.

xmin =







x0, if c2 ≤ x0,
c2, if x0 ≤ c2 ≤ x1,
x1, if c2 ≥ x1.

(1)

In these cases we get

ymin =







y0, if c2 ≤ x0,
c1 − λ, if x0 ≤ c2 ≤ x1,
y1, if c2 ≥ x1.

(2)
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However, in order that we have the maxmium chain lengthymin = 0, so we know thatx0 ≤ c2 ≤ x1, and

c1 = λ.

The form of the catenary is therefore

y = c1

[

cosh

(

x− c2
c1

)

− 1

]

Note thatcosh2(x)− sinh2(x) = 1, so

c1 sinh((x− c2)/c1)) = sign(x− c2)

√

c21 cosh
2((x − c2)/c1))− c21

= sign(x− c2)
√

(y1 + λ)2 − c21.

Hence

L{y} = c1 [sinh((x − c2)/c1))]
x1

x0

=

[

sign(x− c2)
√

(y + λ)2 − c21

]x1

x0

=











































√

(y1 + λ)2 − c21 −
√

(y0 + λ)2 − c21, if c2 < x0,
√

(y1 + λ)2 − c21, if c2 = x0,
√

(y1 + λ)2 − c21 +
√

(y0 + λ)2 − c21, if x0 < c2 < x1,
√

(y0 + λ)2 − c21, if c2 = x1,

−
√

(y1 + λ)2 − c21 +
√

(y0 + λ)2 − c21, if c2 > x1.

but as we know for the maximum length chain thatλ = c1 andx0 ≤ c2 ≤ x1, we can write

L{y} =
√

y1(y1 + 2c1) +
√

y0(y0 + 2c1).

We can determinec1 andc2 now by numerical solution of the end-point equations. We solve by constructing a
function which is the square of the deviation from the two end-point constraints:i.e., we define

g1(c1, c2) = y0 − c1 cosh

(

x0 − c2
c1

)

− c1,

g2(c1, c2) = y1 − c1 cosh

(

x1 − c2
c1

)

− c1,

We then use Matlab’s optimization toolbox functionfminsearch to find the minimum of

g(c1, c2) = g21 + g22.

Then we use these to determineLmax. Notice also that ascosh(x) ≥ 1 for all x, and is equal to 1 only atx = 0,
the point at which the curve touches the ground will bec2.
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Matlab code: for performing estimating the catenary parameters is included below.

function [L_max, L_min, c_1, c_2, lambda] = catenary_max_l ength(y_0, y_1, x_0, x_1)
%
% file: catenary_max_length.m, (c) 2012 Matthew Roughan
% author: Matthew Roughan
% email: matthew.roughan@adelaide.edu.au
%
%
% CATENARY_SOLVER: calculate the maximum (and min) length o f a hangling chain before it dangles on the
% ground (is drawn taught), where it takes catenary shape
% y = c_1* cosh((x-c_2)/c_1) - c_1
% with fixed length
% L = c_1. * ( sinh((x_1-c_2)./c_1) - sinh((x_0-c_2)./c_1) );
% but we need to work out the constants of integration c_1, c_2 and lambda
%
% INPUTS:
% y_0 = height of the left pylon
% y_1 = height of the right pylon
% x_0 = left pylon position
% x_1 = right pylon position
%
% OUTPUTS:
% L_max = the maximum length of the chain
% L_min = the infimum length of the chain
% c_1,c_2,lambda = parameters of maximal catenary
%
%
%
%
L_min = sqrt( (x_1 - x_0).ˆ2 + (y_1 - y_0).ˆ2 );

% create a function which we will minimize to find the solutio n
% g1 is the left end-point constraint
% g2 is the right end-point constraint
% a = [c_1, c_2], lambda = c_1
g1 = @(a) ( y_0 - a(1) * cosh( (x_0 - a(2))/a(1) ) + a(1) ).ˆ2;
g2 = @(a) ( y_1 - a(1) * cosh( (x_1 - a(2))/a(1) ) + a(1) ).ˆ2;
g = @(a) g1(a) + g2(a);
a_est = [100, (x_0+x_1)/2];
options = optimset(’fminsearch’);
options = optimset(options, ’MaxFunEvals’, 100000, ’MaxI ter’, 1000);
[a, fval, exitflag, output] = fminsearch(g, a_est, options );
c_1 = a(1); % must be > 0
c_2 = a(2); % must be between x_0 and x_1 for the maximum
lambda = -c_1; % for the maximum

g_val = [g1(a), g2(a)];

% compute the maximum length
L_max = c_1. * ( sinh((x_1-c_2)./c_1) - sinh((x_0-c_2)./c_1) );
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3. Catenary (numerical solution of the constants):

The shape of a hanging chain of lengthL was presented as the solution of the problem of minimizing potential energy

Wp{y} = mg

∫ x1

x0

y
√

1 + y′2 dx,

under the isoperimetric constraint

G{y} =

∫ x1

x0

√

1 + y′2 dx = L.

We determined that the solution to this problem took the form

y = c1 cosh

(

x− c2
c1

)

− λ,

where the constantsλ, c1 andc2 are determined by the lengthL of the chain, and the end conditions, i.e., the heights
of the polesy(x0) = x0 andy(x1) = x1.

We determined a method to calculate the constants when the problem is symmetric, though this required numerical
solution of a non-linear equation. In this more general case, we can make use of identity such as

L{y} =

∫ x1

x0

√

1 + y′2 dx

=

∫ x1

x0

cosh((x − c2)/c1) dx

= c1 [sinh((x − c2)/c1))]
x1

x0
.

Given a lengthL > D whereD is the distance between the two pylon ends, write code to numerically determine the
constants(c1, c2, λ).

Solution: Given a lengthL > D whereD is the distance between the two pylon ends, there will alwaysbe a valid
catenary, because we know we could hang a chain between thesetwo points (ignoring the possibility that it would drag
on the surface).

We solve by constructing a function which is the square of thedeviation from the three available constraints:i.e., we
define

g1(c1, c2, λ) = y0 − c1 cosh

(

x0 − c2
c1

)

− λ,

g2(c1, c2, λ) = y1 − c1 cosh

(

x1 − c2
c1

)

− λ,

g3(c1, c2, λ) = L− c1 [sinh((x− c2)/c1))]
x1

x0
.

We then use Matlab’s optimization toolbox functionfminsearch to find the minimum of

g(c1, c2, λ) = g21 + g22 + g23.

Matlab code is provided below, as are some example results.
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Matlab code: for performing estimating catenary parameters is includedbelow.

function [x, y, c_1, c_2, lambda, Lest, Fest, Lest_check, Fe st_check, ...
f_val, exitflag, output] = catenary_solver_gen(n, y_0, y_ 1, x_0, x_1, L)

%
% file: catenary_solver_gen.m, (c) 2012 Matthew Roughan
% author: Matthew Roughan
% email: matthew.roughan@adelaide.edu.au
%
%
% CATENARY_SOLVER: solves the shape of a hanging chain, whic h we know will be
% y = c_1* cosh((x-c_2)/c_1) + lambda
% with fixed length
% L = c_1. * ( sinh((x_1-c_2)./c_1) - sinh((x_0-c_2)./c_1) );
% but we need to work out the constants of integration c_1, c_2 and lambda
%
% INPUTS:
% n = number of points at which to calculate the curve
% y_0 = height of the left pylon (must be > 0)
% y_1 = height of the right pylon (must be > 0)
% x_0 = left pylon position
% x_1 = right pylon position
% L = length of chain
%
% OUTPUTS:
% [x, y] = n (x,y) points along the shape of the catenary
% c_1,c_2 = constants of integration
% lambda = Lagrange multiplier
% Lest = estimated length, to be used in debugging
% Fest = an estimate of the functional which gives the potenti al energy of the chain
% Lest_check = a check based on estimated (x,y) positions (on ly valid for large n)
% Fest_check = a check based on estimated (x,y) positions (on ly valid for large n)
% [f_val, exitflag, output] = output from the optimization u sed to find the solution
%

if (y_0 < 0)
error(’y_0 must be >= 0’);

end

if (y_1 < 0)
error(’y_1 must be >= 0’);

end

if (x_1 <= x_0)
error(’x_1 should be > x_0’);

end

if (nargin == 6) % L defined

[x, y, c_1, c_2, lambda, Lest, Fest, Lest_check, Fest_check , ...
f_val, exitflag, output] = catenary_new_b(y_0, y_1, x_0, x _1, L);

elseif (nargin == 5) % compute the natural catenary
lambda = 0;

% create a function which we will minimize to find the solutio n
% g1 is the left end-point constraint
% g2 is the right end-point constraint
% remembering for this case, there may be one, zero, or two sol utions
g1 = @(a) ( y_0 - a(1) * cosh( (x_0 - a(2))/a(1) )).ˆ2;
g2 = @(a) ( y_1 - a(1) * cosh( (x_1 - a(2))/a(1) )).ˆ2;
g = @(a) g1(a) + g2(a);

a_est = [0.1, (x_1+x_0)/2]; % case with smaller c_1 is usuall y the min
options = optimset(’fminsearch’);
options = optimset(options, ’MaxFunEvals’, 100000);
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[a, fval1, exitflag1, output1] = fminsearch(g, a_est, opti ons);
c_11 = a(1);
c_21 = a(2);
Fest_1 = c_11 * (x_1 - x_0)/2 + ...

c_11ˆ2 * (sinh(2 * (x_1 - c_21)/c_11)-sinh(2 * (x_0 - c_21)/c_11))/4;

a_est = [100, (x_1+x_0)/2]; % case with larger c_1 is importa nt to check for as well
options = optimset(’fminsearch’);
options = optimset(options, ’MaxFunEvals’, 100000);
[a, fval2, exitflag2, output2] = fminsearch(g, a_est, opti ons);
c_12 = a(1);
c_22 = a(2);
lambda = 0;
Fest_2 = c_12 * (x_1 - x_0)/2 + ...

c_12ˆ2 * (sinh(2 * (x_1 - c_22)/c_12)-sinh(2 * (x_0 - c_22)/c_12))/4;
f_val = [fval1, fval2];

if (fval1 > 1.0e-6 & fval2> 1.0e-6)
% no solutions
c_1 = NaN;
c_2 = NaN;
exitflag=exitflag1;
output=output1;

elseif (Fest_1 < Fest_2)
c_1 = c_11;
c_2 = c_21;
exitflag=exitflag1;
output=output1;

else
c_1 = c_12;
c_2 = c_22;
exitflag=exitflag2;
output=output2;

end

end

% check the length is correct
Lest = c_1. * ( sinh((x_1-c_2)./c_1) - sinh((x_0-c_2)./c_1) );

%
% now calculate points on the curve
%
x = x_0:(x_1 - x_0)/n:x_1;
y = c_1 * cosh((x-c_2)/c_1) + lambda;

% second check of the length
Lest_check = sum(sqrt(diff(x).ˆ2 + diff(y).ˆ2));

% calculate the potential a few different ways to compare
Fest_1 = sum(y(1:end-1). * sqrt(diff(x).ˆ2 + diff(y).ˆ2));
Fest_2 = c_1 * (x_1 - x_0)/2 + ...

c_1ˆ2 * (sinh(2 * (x_1 - c_2)/c_1)-sinh(2 * (x_0 - c_2)/c_1))/4 - ...
lambda * Lest;

% Fest_3 = c_1 * (x_1 - x_0)/2 + ...
% c_1* ((y_1+lambda) * sinh((x_1 - c_2)/c_1) - (y_0+lambda) * sinh((x_0 - c_2)/c_1))/2 - ...
% lambda* Lest;
% Fest_4 = c_1 * (x_1 - x_0)/2 + ...
% c_1* (y_1 * sinh((x_1 - c_2)/c_1) - y_0 * sinh((x_0 - c_2)/c_1))/2 - ...
% lambda* Lest/2;

Fest = Fest_2;
Fest_check = Fest_1;

12
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Remarks:

and

F{y} =

∫ x1

x0

(c1 cosh((x − c2)/c1)− λ)

√

1 + sinh2((x− c2)/c1) dx

=

∫ x1

x0

c1 cosh
2((x − c2)/c1) dx− λL

=

∫ x1

x0

c1
2
[1 + cosh(2(x− c2)/c1)] dx− λL

=
c1
2
(x1 − x0) +

[

c21
4
sinh(2(x− c2)/c1)

]x1

x0

− λL

=
c1
2
(x1 − x0) +

[

c21
2
sinh((x − c2)/c1) cosh((x − c2)/c1)

]x1

x0

− λL

=
c1
2
(x1 − x0) +

[c1
2
sinh((x− c2)/c1)(y + λ)

]x1

x0

− λL

=
c1
2
(x1 − x0) +

c1
2
[y(x) sinh((x − c2)/c1)]

x1

x0
−

λL

2

which were given in lectures.

sinh(2x) = 2 sinh(x) cosh(x), and cosh(2x) = 2 cosh2(x) − 1,

If y1 = y2 we get the symmetric case, which hasc2 = (x1 + x2)/2, and from above

F{y} =
c1
2
(x1 − x0) +

c1
2
[y(x) sinh((x− c2)/c1)]

x1

x0
−

λL

2

=
c1
2
(x1 − x0) +

y1 − λ

2
L

Whenλ = 0, we get the natural catenary, and so this must give the lowestvalue forF{y} for anyL, and hence,λ < 0
for all other cases.

The first question we might therefore wish to answer is the rough location ofc2.

We can just try each of the cases above, and see which one works...

ymin = c1 − λ occurs whenx = c2, and the derivative will be zero – could be in the middle, or the left or right of the
interval of interest

Start withy and approximatecosh using first two terms of Taylor series:

sinh(x) = x+
x3

6
+

x5

120
+ ...

cosh(x) = 1 +
x2

2
+

x4

24
+ ...

so that

y + λ = c1 cosh

(

x− c2
c1

)

,

= c1 +
(x− c2)

2

2c1
+ · · ·

13
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Taking the values atx0 andx1, and subtracting we get

y1 − y0 =
(x1 − c2)

2

2c1
−

(x0 − c2)
2

2c1
+ · · ·

2c1(y1 − y0) ≃ (x1 − c2)
2 − (x0 − c2)

2

≃ (x2
1 − x2

0)− 2(x1 − x0)c2

c1 ≃
(x2

1 − x2
0)− 2(x1 − x0)2c2
2(y1 − y0)

≃ α+ βc2

so there is an approximately linear relationship betweenc1 andc2. Substitute this into the equation forL, and we get
a single non-linear equation which we can solve to get an approximate value forc2, and hencec1 (by the above) and
henceλ by the edge equations.

This gives us an initial guess as to the values ofc1, c2 andλ which we can refine to get an optimal value.

14
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4. Direct Approximate Solution: One of the classic problems in the CoV is the catenary problem, which we solved
analytically early in the course. The problem reduces to minimising potential energy

Wp{y} = mg

∫ L

0

y(s)ds = mg

∫ x1

x0

y
√

1 + y′2dx,

subject to the end-point conditions (the fixed heights of thepylons), and the length constraint:

G{y} =

∫ L

0

y(s)ds =

∫ x1

x0

√

1 + y′2 dx = L.

Ignoring the constantmg, we solved this using Lagrange multipliers, instead seeking extremals of

H{y} =

∫ x1

x0

(y + λ)
√

1 + y′2 dx.

Now we consider the numerical approximation and solution ofthis problem. We could apply Euler’s finite differences,
or Ritz, but instead consider a chain of lengthL made ofn pieces of lengthℓ (wherenℓ = L). Assume each chain
link i starts at the point(xi, yi) and ends at(xi+1, yi+1), for i = 0, 1, . . . , n− 1, whereyi ≥ 0 andxi ∈ [xa, xb]. The
length constraint on each link means that

ℓ2 = (xi+1 − xi)
2 + (yi+1 − yi)

2, ∀i = 0, 1, 2, . . . , n− 1.

The start and end points of the chain are fixed at(x0, y0) = (xa, ya) and(xn, yn) = (xb, yb) respectively, and we
assume thatD =

√

(xb − xa)2 + (yb − ya)2 < L to allow for a solution.

The objective function that we aim to optimize is to minimizethe potential energy of the chain, where the potential of
each link will be given by the height of its mid-point, times aconstant (mg), i.e.,

W = mg

n−1
∑

i=0

yi + yi+1

2
.

Note that the constant factors are irrelevant, and the sum concertinas so that we can rewrite it

W =

n−1
∑

i=1

yi,

where we ommit the values of the end points because these are fixed.

Use a numerical optimization algorithm to find the shape of the curve that solves this problem, and show numerically
that it approaches the analytic solution asn → ∞.

Solution:

We can solve the problem by including a Lagrange multiplier for each of the constraints, i.e.,

f(x,y, λ) =

n−1
∑

i=1

yi +

n−1
∑

i=0

λi

[

ℓ2 − (xi+1 − xi)
2 − (yi+1 − yi)

2
]

.

for some Lagrange mutipliersλi.

To apply Steepest Descent, starting at some pointv0, we need to calculate the gradient. The gradient of this function is
derived as follows:

∂f

∂xi

= 2λi(xi+1 − xi)− 2λi−1(xi − xi−1),

∂f

∂yi
= 1 + 2λi(yi+1 − yi)− 2λi−1(yi − yi−1),

∂f

∂λi

=
[

ℓ2 − (xi+1 − xi)
2 − (yi+1 − yi)

2
]

,

15
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except fori = 0 andi = n, where the end points are fixed so∂f/∂xi = ∂f/∂yi = 0. The Hessian matrix is hence
almost tridiagonal, though we don’t need this for the Steepest Descent Algorithm.

Take the case withn even, and then the starting point can have the chain links in azig-zag. Construct it as follows.
Draw the line interpolating between(xa, ya) and(xb, yb), i.e.,

y =
yb − ya
xb − xa

(x − xa) + ya,

which has length
D =

√

(xb − xa)2 + (yb − ya)2.

Now distribute a set of pointsx′
i evenly along a line of length

x′
i = iD/n.

and alternate they′i positions to satisfy the length constraint on each segment:

y′i =

{

ya, if i = 2k,
ya + d if i = 2k + 1,

whered is chosen to enforce the length constraint on each segment, i.e.,

d =
√

ℓ2 − (D/n)2.

The points(x′
i.y

′
i) are then rotated byθ about(xa, ya) to meet the other end-point constraint(xb, yb), where the rotation

takes the form
(

xi

yi

)

=

(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(

x′
i − xa

y′i − ya

)

+

(

xa

ya

)

where

cos(θ) =
xb − xa

D

sin(θ) =
yb − ya

D

Matlab code: for performing the steepest descent is provided below:

16
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d

Figure 3: .
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5. Rayleigh-Ritz:

Consider the following problem — find the extremal curves of the following functional:

F{y} =

∫ 1

0

y′
2
− 2g(x)y dx,

for twice differentiable functiong(·), andy(0) = y(1) = 0.

(a) Solve this problem using the Euler-Lagrange equations in general, and in detail for the special cases

i. g(x) = sin(2πx).
ii. g(x) = x.

(b) Now use the Rayleigh-Ritz method to solve the same problems using the approximation

ỹN = b0 +

N
∑

n=1

an sin(2πnx) + bn cos(2πnx).

Solution:

(a) The Euler-Lagrange equations are

d

dx

∂f

∂y′
−

∂f

∂y
=

d

dx
2y′ + 2g(x) = 2y′′ + 2g(x) = 0.

The solution is just to integrate twice, resulting in

y′ = −

∫

g(u) du+ c1

y = −

∫∫

g(u) du dv + c1x+ c2,

wherec1 andc2 are chosen to satisfyy(0) = y(1) = 0.

i. So for the particular caseg(x) = sin(2πx), where the double integral will be− sin(2πx)/4π2, which is zero
at the end-points, the extremal takes the form

y(x) =
1

4π2
sin(2πx).

ii. For the caseg(x) = x, the double integral will bex3/6, so the extremals are

y(x) = −
x3

6
+ c1x+ c2.

Using the end-point conditionsy(0) = y(1) = 0 we get

y(x) = −
x3

6
+

x

6
=

x(1− x2)

6
.

(b) Given the approximation, we get

ỹN = b0 +

N
∑

n=1

an sin(2πnx) + bn cos(2πnx),

ỹ′N = 2π
N
∑

n=1

nan cos(2πnx)− nbn sin(2πnx),

ỹ′N
2

= 4π2
N
∑

n=1

N
∑

m=1

nm
[

anam cos(2πnx) cos(2πmx)− anbm cos(2πnx) sin(2πmx) + bnbm sin(2πnx) sin(2πmx)
]

.

18
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When we integrate, we can use

∫ 1

0

cos(2πnx) cos(2πmx) dx =
1

2
δmn

∫ 1

0

sin(2πnx) sin(2πmx) dx =
1

2
δmn

∫ 1

0

sin(2πnx) cos(2πmx) dx = 0

So the “cross-terms” in the above integrals vanish, and we are left with

F{y} =

∫ 1

0

y′
2
+ 2g(x)y dx

F (a,b) = 2π2
N
∑

n=1

n2(a2n + b2n)− 2

N
∑

n=1

an

∫ 1

0

g(x) sin(2πnx) dx− 2

N
∑

n=0

bn

∫ 1

0

g(x) cos(2πnx) dx

= 2π2
N
∑

n=1

n2(a2n + b2n)−
N
∑

n=1

anAn −
N
∑

n=0

bnBn,

wherean = 2
∫

g(x) sin(2πnx) dx andBn = 2
∫

g(x) cos(2πnx) dx are the Fourier series coeeficients forg(x)
(assuming we repeat the function on[0, 1] periodically). We can now take the derivatives, and forn = 1, 2, . . . , N
we get

d

dan
F (a,b) = 4π2n2an −An

= 0,

d

dbn
F (a,b) = 4π2n2bn − Bn

= 0,

or

an =
An

4π2n2
,

bn =
Bn

4π2n2
.

Note that thebn terms don’t depend onn, so we simply expand until we have enough of these terms to converge.
We don’t get a condition forb0, but we have the end-points conditions to consider, and given cos(0) = cos(2π) =
1, and we requirey(0) = y(1) = 0, we choose

b0 = −
N
∑

n=1

bn.

In the specific cases of interest:

i. Wheng(x) = sin(2πx), the Fourier coefficients are

An =

{

1, for n = 1,
0, otherwise,

and Bn = 0,

so for alln we get the exact solution:

ỹn(x) =
1

4π2
sin(2πx).
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ii. For the caseg(x) = x, we consider the Fourier coefficients for the “saw-tooth” function, i.e.,

An = 2

∫ 1

0

x sin(2πnx) dx = −
1

πn
,

Bn = 2

∫ 1

0

x cos(2πnx) dx = −
1

2πn2
actually0,

ỹn(x) = b0 +

n
∑

n=1

1

4π2n3
sin(2πnx).+

n
∑

n=1

1

8π2n3
cos(2πnx).

The following figure shows this approximation forN = 1, 2, 3, . . . versus the actual extremal curve:
If we just took a Fourier expansion ofx(1− x2) we get

∫ 1

0

x(1− x2) dx = 1/4

an = 2

∫ 1

0

x(1 − x2) sin(2πnx) dx = −
3

2π3n3

bn = 2

∫ 1

0

x(1 − x2) cos(2πnx) dx = −
3

2π2n2

20
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6. Another Problem (not finished yet):

Consider the following problem — find the extremal curves of the following functional:

F{y} =

∫ 1

0

y′
2
− y2 dx,

for y(0) = 1 andy(1) = e.

(a) Solve this problem using the Euler-Lagrange equations.

(b) Now use the Rayleigh-Ritz method to solve the problem using the trial functions

ỹ =

∞
∑

i=0

aix
i.

Derive a set of conditions on theai and use your solution to the previous part to solve these conditions.

Solution:

(a) The LHS of the Euler-Lagrange equation is

d

dx

∂f

∂y′
− f =

d

dx
(2y′)− 2y,

So the DE is
y′′ − y = 0.

This is a linear, homogeneous DE, with characteristics equation m2 − 1 = 0, som = ±1, and therefore the
solution is in the form

y(x) = Aet +Be−t.

From the end-point conditionsy(0) = 1 andy(1) = we get the constraints

A+B = 1,

Ae −B/e = e.

which has solutionA = 1, B = 0, and therefore

y(x) = et.

(b) Use the an approximation function

yn(x) = [1 + (e− 1)x] +

n
∑

i=1

aix
i(1 − x).

yn(x) = [1 + (e− 1)x] +
n
∑

i=1

ai sin(2πix).

i. Given ỹ =
∑∞

i=0 aix
i we get

y2 =

∞
∑

i,j=0

aiajx
i+j ,

y′2 =
∞
∑

i,j=1

ijaiajx
i+j−2

=
∞
∑

i,j=0

(i + 1)(j + 1)ai+1aj+1x
i+j ,
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so the integral can be written

F{y} =

∫ 1

0

ỹ′2 − ỹ2 dx,

=

∫ 1

0

∞
∑

i,j=0

(i + 1)(j + 1)ai+1aj+1x
i+j −

∞
∑

i,j=0

aiajx
i+j dx,

=

∞
∑

i,j=0

[(i + 1)(j + 1)ai+1aj+1 − aiaj ]

∫ 1

0

xi+j dx,

=
∞
∑

i,j=0

(i+ 1)(j + 1)ai+1aj+1 − aiaj
i+ j + 1

=

∞
∑

i,j:i6=j

(i+ 1)(j + 1)ai+1aj+1 − aiaj
i+ j + 1

+

∞
∑

i=0

(i + 1)2a2i+1 − a2i
2i+ 1

.

Now to find the minimum, we set the partial derivatives to zeroand we therefore get (fori ≥ 1)

∂F (a)

∂ai
=

∞
∑

j:j 6=i

i(j + 1)aj+1

i+ j
+

∞
∑

j:j 6=i

−aj
i+ j + 1

+
i2ai
i

+
−ai
i+ 1

(3)

=

∞
∑

j=0

i(j + 1)aj+1

i+ j
+

∞
∑

j=0

−aj
i+ j + 1

+
i2ai

2(i− 1)
−

ai
2(i+ 1)

(4)

=

∞
∑

j=0

i(j + 1)aj+1

i+ j
+

∞
∑

j=0

−aj+1

i+ j + 2
−

a0
i + 2

+
i2ai

2(i− 1)
+

−ai
2i

= 0. (5)

We also know from the end-point conditions that

a0 = 1 and
∑

i

ai = e.

This represents a set of relationships between theai, which might be quite hard to solve, however, we already
know that there is a solution in this form:

y = et =

∞
∑

i=0

xi

i!
,

so if we takeai = 1/i! we should get a solution.
First note that with the above choicea0 = 1, and

∞
∑

i=0

ai =
∞
∑

i=0

1/i! = e.

Now substitute theseai into the relation (5) and we get

ii. Do you get the same solution?

iii. Why did we choose the particular values ofa0 anda1 as the first terms of the sequence?
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7. More on Rayleigh-Ritz:

In R-R we use an approximation, typically of the form

yn(x) = φ0(x) +

n
∑

i=1

ciφi(x),

to approximate the function

F{y} =

∫ x1

x0

f(x, y, y′) dx,

by

F (c1, c2, . . . , cn) =

∫ x1

x0

f(x, yn, y
′
n) dx.

whereφ0 satisfies the boundary conditions ony andφi(xi) = 0.

Show ...

Solution:

The Leibniz integral rule says that forf and∂f/∂x continuous over the region[x0, x1]× [y0, y1] we can differentiate
an integral in the following form:

d

dx

∫ y1

y0

f(x, y) dy =

∫ y1

y0

∂

∂x
f(x, y) dy.

F (c1, c2, . . . , cn) =

∫ x1

x0

f(x, yn, y
′
n) dx

=

∫ x1

x0

f

(

x, φ0 +

n
∑

i=1

ciφi, φ
′
0 +

n
∑

i=1

ciφ
′
i

)

dx

∂

∂ci
F (c1, c2, . . . , cn) =

∫ x1

x0

∂

∂ci
f

(

x, φ0 +

n
∑

i=1

ciφi, φ
′
0 +

n
∑

i=1

ciφ
′
i

)

dx

=

∫ x1

x0

∂f

∂y
φi +

∂f

∂y′
φ′
i dx

=

∫ x1

x0

[

∂f

∂y
−

d

dx

∂f

∂y′

]

φi dx,

= 0, ∀i = 1, 2, . . . , n.

using the chain rule and integration by parts (noting thatφi(xi) = 0 for i = 1, 2, . . . , n). Obviously the above would
be satisfied if the Euler-Lagrange equations were satisfied.However, the underlying assumption of numerical methods
is that the Euler-Lagrange equations are difficult.

When we substituteyn into the above formula we get

∂

∂ci
F (c1, c2, . . . , cn) =

∫ x1

x0

[

∂f

∂y
−

d

dx

∂f

∂y′

]

φi dx,

=

∫ x1

x0

g(x, φ1, . . . , φn, φ
′
1, . . . , φ

′
n)φi(x) dx,

= 0, ∀i = 1, 2, . . . , n.

and if this can be calculated, we can then determine values ofci to approximate the extremal.

However, Galerkin noted that an alternative
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8. Rayleigh-Ritz: Find approximate solutions to the following DE

d2u

dt2
= 36t2 + 12t− 4,

subject to the boundary conditionsu(1) = u(−1) = 0, using Rayleigh-Ritz by constructing an appropriate functional,
and approximatingu using

un =

n
∑

i=1

cit
i−1(t2 − 1),

for n = 1, 2 and3, and comment on the accuracy of these solutions.

Solution: The true solution to this is
u(t) = 3t4 + 2t3 − 2t2 − 2t− 1.

We can construct a functional for this problem

F{u} =

∫ 1

−1

1

2

(

du

dt

)2

+ (36t2 + 12t− 4)u dx.

The Euler-Lagrange DE is the equation to be solved.

Given the approximation:

un =

n
∑

i=1

cit
i−1(t2 − 1),

u′
n =

n
∑

i=2

(i− 1)cit
i−2(t2 − 1) +

n
∑

i=1

2cit
i.

Use Matlab’s symbolic manipulation toolkit, we construct the functional for these cases, and then differentiate, to
obtain a set of equations for theci.

CODE

The results are:

• n = 1:

• n = 2:

• n = 3:
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