Variational Methods and Optimal Control
Numerical Questions

Matthew Roughan
<matthew.roughan@adelaide.edu~au

Some numerical questions and examples:

1. Approximation: In many applications, we want to approximate a piece-wisgicoous functionR(z) with a smooth
curve. For instance:

e itis common to compile histograms of a set of data, but a gigitited histogram can look artificially “blocky”;

e in many signal processing applications we will have a sigoften sampled at discrete time intervals), that
contains noise, and one method for removing white noisessiooth the data.

We can approximate a piecewise constant curve arbitraldyety, but the cost is the slope of the approximating
function may become arbitrarily large. The resulting appration won't look any smoother than the original.

To obtain a “smoother” approximation, we need to constiaénderivative of the approximation function in some way,
but a fixed constraint’| < ¢ would be rather rigid. Instead let us solve the optimizaposblem to minimize

b
F{y}=/ V(y—R)*+ ¢ da,

over the intervala, b], with y(z) free at each end point, where the parametatlows a trade off between degree of
“smoothness” against a closer fit to the original.

Solution: The Euler-Lagrange equations are

So to find our approximation we need to find the solution to
y' =7y = —*R(),

for piece-wise constant functiai(z). The solution to the homogeneous BE— +%y = 0 is
yn = Ae’* + Be 7%,

Break the intervala, b] into the segments whet(z) is constant, i.e., take a series of poiats- zp < z1 < --- <
x, = bwhereR(z) = ¢; forall z € [z;, z;41), then on each segment the DE will have particular solujios ¢; and
so on that segment we get

yi(r) = a; e’ +bie " + ¢,
y; ()

az"Yew - bi7677x7
and the constants; andb; will be determined by the end-points (which are not knowngach segmera priori).
To find the actual approximating curve we have to piece tagetiseries of such segments so that

(a) the end-point values all match so the curve is continuous
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(b) the derivatives match at the end points, so the curve @gmand
(c) the natural boundary conditions (where here are eqeivaby’ = 0 at the boundary) are also satisfied.

The result will be our smooth interpolation of the piecewdseastant curve.

In detail, at each point; fori = 1,2,...,n — 1 we get a pair of conditions
yi—1(w) = yilw)
Yioa (i) = yi(z)
which is 2(n — 1) conditions + the two natural boundary conditions where weel?a unknowns (the(a;, b;) for
i=0,...,n— 1). Using the form of the solutiog; in our answer we get
ai,le'ﬂi + bifleivxi — aievxi — bieivzi = C; —Ci—1
v [ai—1€™ — bi_1eT " — a; 7" + bie 7] = 0
fori =1,2,...,n — 1, and the natural boundary conditions
age™® —bge™ 7" = 0
an_le"yb — bn_le_"yb = 0

We have2n linear equations i2n unknowns. Solving gives the co-efficients we need to obtarsblution.
For an example, see Figure 1, which shows the approximdionisree differenty values.
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Figure 1: Approximations for three differemtvalues.

Remarks: We can obviously generalize this method to deal with appnaxion of curves that are piecewise linear, or
for interpolating a function which we only know at some psint

Moreover, the method above is also a special case of a moegajetass of smoothing and approximation algorithms.
In general, we are seeking to minimise sodgancebetween our approximation and the original function, whliko
meeting some smoothness criteria. In general we might wriseas find the curve that minimises

Fly} = ~vd.{y} + I{y},
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whered is a distance metric between the original functioand the approximatiog, and I(-) is a function that
measures the irregularity, or lack of smoothnesg.dh the case above, both of these are integrals:

d.{yt = /a'b@zfdz,
Hy} = Lby’zdz-

However, we could replace these with alternatives.

e We could measure irregularity by minimizing curvature ¢ #iprpoximating functiun, as measured by

b
oy = [ v

or with higher-order derivatives, or different powers, onge combination thereof.

e We can use different powegsin the distance function (corresponding to thenorm distance. We could also
measure the distance only on a set of sample peints.g., we could take a function

dAy} = (y(@:) — i)

K2

e We can replace either of the two optimization criteria widrdhconstraints, e.gly’| < 1, ory(z;) — y; = 0,
which can be incorporated into the problem in the usual way.

Particular combinations of these two result in well-knoywedal cases:

e If we require thaty(z;) = v;, €.9., we require the curve to matét(z) at the grid pointse;, and minimize
curvature of the approximation should be minimal, then thkeEPoisson equations are

y(3) =0

subject to the constraints, so the curves will be piece-aigec. This leads naturally to interpolating splines.
e Smoothing splines arise if we aim to minimize

2 b
Fly} = VZ (y(zi) — u1) +/ y'"? dz.

As ~ approaches 1, we approach the interpolative splines abdareas, whery approaches zero we obtain a
linear-regression to the data.

e De Boor extended this to allow for weights on each data paimd, higher-order derivatives, e.g.,

Flyb=n3)] (W#)Q +/ab Y™ dg.

The critical point is that nearly all of these “smoothershdse derived from the calculus of variations.

The choice of smoothing parameteis a hard problem in general and is often a little arbitrdrguigh in specific cases
there may be methods to choose it quantitatively, based owtkissues such as the level of noise in a dataset.
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Matlab code: for performing calculating the co-efficients for an arhijyrgiece-wise constant function is included

below:

function [a,b,c] = approx_function(x_0, x_n, x_i, R_i, gam ma)

% file: approx_function.m, (c) Matthew Roughan, Thu Oct 28 2 010
% created: Thu Oct 28 2010

% author: Matthew Roughan, matthew.roughan@adelaide.edu .au

%

% R is a piece-wise constant function which we wish to approxi mate

% with minimal deviation, and slope, i.e., minimize
% \[ F{ y \} =\int_{a}{b} \gamma™2 (y-R)2 + y"2 \, dx , \]
%

% input:

% x_0

% x_n = the function R(x) is defined on [x_0, x_n]

% x_i = a nx1 vector of the x-values where the function R change S

% x_i(1) = x 0

% but x_n is not included in the vector x_i

% R_i = a nx1 vector of the values of R(x) on each sub-interval

% gamma = the tradeoff parameter between fidelity to the func tion and the

% allowed slope of the approximation

%

% outputs:

% the optimal approximation function takes the form

% y_i(x) = a_i e\gamma x} + b_i e{-\gamma x} + c_i

% on each interval [x_i(i), x_i(i+1)]. The outputs of the fun ction are vectors of
% the coefficients a_i and b_i

% a = a nx1 vector of the coefficients of a_i in the above approx imation
% b = a nx1 vector of the coefficients of b_i in the above approx imation
% ¢ = a nx1 vector of the coefficients of c_i in the above approx imation (here c_i = R_i)
%

n = length(x_i);

% check inputs
sx = size(x_i);
sR = size(R_i);
if (sx(1) == 1 & sx(2) > 1)
X_i = x i
elseif (sx(1) > 1 & sx(2) > 1)
error('sx should be a nx1 vector’);
end
if (sR(1) == 1 & sR(2) > 1)
R_i = R_i}
elseif (sR(1) > 1 & sR(2) > 1)
error('sR should be a nx1 vector);
end
if (sx(1) "= sR(1) | sx(2) "= sR(2))
error(’x and R should be the same size’);
end
if (x_0 "= x_i(1))
error(we should have x_i(1)=x_0’);
end

% temporary variables

c = R_j;
d = exp(gamma=* x_i);
e = exp(-gamma *x_i);

% set up continuity equations at (n-1) joins x_i(2:end)

% a_ {i-1} e\gamma x_i} + b_{i-1} e{-\gamma x_i} - a_{i} e” {\gamma x_i} - b_{i} e{-\gamma x_i} & = & c_{i}
%  matrix Al are coefficients for the a_i

% matrix Bl are coefficients for the b_i

% yl are the right-hand side terms of the equations (c_{i} - c_ {i-1)

Al = zeros(n-1,n);
B1 = zeros(n-1,n);
for i=1:n-1

AL(i,i) = d(i+1);
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Al(i+1) = -d(i+1);

B1(i,i) = e(i+1);
B1(i,i+1) = -e(i+1);
end
yl = [diff(c)];
% set up continuity equations for derivatives at (n-1) joins x_i(2:end)
% \gamma \left[ a_{i-1} e*{\gamma x_i} - b_{i-1} e{-\gamma x_i} - ali e{\gamma x_i} + b_i e{-\gamma x_i}

%  matrix A2 are coefficients for the a_i
% matrix B2 are coefficients for the b_i
% y2 are the right-hand side terms of the equations (zero in th is case)
A2 = zeros(n-1,n);
B2 = zeros(n-1,n);
for i=1:n-1

A2(ii)) = d(i+1);

A2(i,i+1) = -d(i+1);

B2(i,i) = -e(i+1);

B2(i,i+1) = e(i+1);
end
y2 = zeros(n-1,1);

% complete set of constraints at the joins

A = [[A1, B1]
[A2, B2]];

y = Iyl y2J;

% add in natural boundary conditions at the edges

% natural boundary says y'=0 at x_0 and x_n

A = [[exp(gamma =*x_0), zeros(1,n-1), -exp(-gamma *x_0), zeros(1,n-1)];
[zeros(1,n-1), exp(gamma *x_n), zeros(1,n-1), -exp(-gamma *X_N)l;
]

y = [0:y;0]

% solve the equations to find ’'coefficients’, which consist s of

% coefficients = [a; b]

% where a = [a_i], and b=[b_i] and A * coefficients = y

coefficients = A \ y;
a = coefficients(1:n)
b = coefficients(n+1:end)
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2. Catenary:
The shape of a hanging chain of lendtlwas presented as the solution of the problem of minimizirtgmual energy

T
Wp{y} = mg/ yV1+y?dr,

To
under the isoperimetric constraint

G{y}:/ Vit y2de = L.

assuming the (given) heights of the pylans= y(x;) > 0.
We determined that the solution to this problem took the form

x—c
y = clcosh( 2) — A,
C1

where the constants, ¢; andcs are determined by the lengthof the chain, and the end conditions, i.e., the heights
of the polesy(xp) = zo andy(x1) = 2.

Determine:

(a) the infimum of possible lengths of chain, and
(b) the maximum length before the chain drags on the grourfiefghty = 0).

Solution:

(&) The minimum length of the chain is not well defined becal®ugh the minimum distance (along a straight
line) is well defined, a chain cannot take this shape (excetta limit as tension in the chain goes to infinity).
Hence we use the term infimum, which can be thought of agstest lower bound
Formally, theinfimumof a subseft of some partially ordered s#tis the greatest element @fthat is less than or
equal to all elements &f. Here, the seT ' is the set of all curveg(z) with two continuous derivatives, that satisfy
the end-point constraints. The ordering is based on thalsemaf the curves, and the subggts the set of all
catenaries. The infimum of the lengths will simply be the taraf the straight line between the two end-points,
because we know that we can get a catenary arbitraily clogesttine. Hence

Lint = v/ (21 — 20)2 + (y1 — v0)>.

That is, even though we can'’t have a catenary which is a $tréiite, it forms the greatest lower bound on the
lengths of the catenaries, i.e., the infimum.

(b) We can calculate the maximum length, by noting that ttercwill only drag on the ground if its minimum height
Ymin < 0, SO the maximum chain length will occur wheg;,, = 0. Note that

y = clcosh<$62> - A
Cc1

y = sinh(w_@),
C1

which has a zero at = ¢;. So there are three possible locations for the mimimum —wheddges, or the
stationary pointg’ = 0.

wo, if c2 < o,
Tmin — C2, if Zo S C2 S T, (1)
1, if Co Z xXq.

In these cases we get

Yo, if Co S Zo,
Ymin = €1 — A, ifxg <o <y, 2
Y1, if cg > 7.
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However, in order that we have the maxmium chain length = 0, so we know thaty < ¢; < x1, and
Cc1 = A.

The form of the catenary is therefore

y = {cosh<z62) 1}
C1

Note thatcosh?(z) — sinh®(z) = 1, so

1 sinh((z — ¢2)/c1))

Sign(e — c2) /2 cosh?(z — c2)/e1)) — 3
= signz —c2)y/(y1 + A)? — .
Hence
L{y} = cfsinh((z —c2)/c1))]se

[sign(:c —co)\/(y+ )2 — cl]

ZT1

o

\/(y1+A)2 —\/yo+)\ —c,  if e <,
(y1 + )% =,

- \/(y1+)\)2—cl+\/y0+)\ -2, if xg < co < 21,

V(o +A)2 —cf,

*\/(ler)\ *Cl+\/(yo+>\)2—c%, if co > x1.

if Cy = X,

if Cy = I,

but as we know for the maximum length chain that ¢; andxy < ¢z < 1, we can write

L{y} = Vy1(y1 + 2¢1) + Vyo(yo + 2¢1).

We can determine; andcy now by numerical solution of the end-point equations. Weedbly constructing a
function which is the square of the deviation from the two-@oiht constraintsi.e., we define

o — Co
Yo — C1 cosh — Cq,

Iy —C2
Y1 —C1 cosh — Cq,

91(01, 02)

92(01, 02)

We then use Matlab’s optimization toolbox functifminsearch  to find the minimum of
g(er,2) = g7 + g3

Then we use these to determihg,x. Notice also that asosh(z) > 1 for all z;, and is equal to 1 only at = 0,
the point at which the curve touches the ground wiltbe
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Matlab code: for performing estimating the catenary parameters is ohedibelow.

function [L_max, L_min, c_1, c_2, lambda] = catenary_max_| ength(y_0, y_1, x_ 0, x_1)
%

% file: catenary_max_length.m, (c) 2012 Matthew Roughan

% author: Matthew Roughan

% email: matthew.roughan@adelaide.edu.au

%
%
% CATENARY_SOLVER: calculate the maximum (and min) length o f a hangling chain before it dangles on the

% ground (is drawn taught), where it takes catenary shape
% y = c_lxcosh((x-c_2)/c_1) - c_1

% with fixed length

% L = c_1.+( sinh((x_1-c_2)./c_1) - sinh((x_0-c_2)./c_1) );

% but we need to work out the constants of integration c_1, c_2 and lambda
%

% INPUTS:

% y 0 = height of the left pylon

% y 1 = height of the right pylon

% x_0 = left pylon position

% x_1 = right pylon position

%
% OUTPUTS:

% L_max = the maximum length of the chain
% L_min = the infimum length of the chain
% c_1,c_2,lambda = parameters of maximal catenary

%
%
%
%
L_min = sgrt( (x_1 - x 0)."2 + (y_1 - y _0)."2 ),

% create a function which we will minimize to find the solutio n
% gl is the left end-point constraint

% g2 is the right end-point constraint

% a = [c_1, c_2], lambda = c_1

gl = @@) (y 0 -a(l) =+cosh( (x 0 - a@)a(l) ) + a(1) ).”2;

g2 = @@) (y_1-al =*cosh( (x_1- a2)/a(l)) + a(1) ).”2;

g = @@ gl(a + g2(a);

a_est = [100, (x_O+x_1)/2];

options = optimset(‘fminsearch’);

options = optimset(options, 'MaxFunEvals’, 100000, 'MaxI ter’, 1000);
[a, fval, exitflag, output] = fminsearch(g, a_est, options );

c_1 = a(l); % must be > 0

c_2 = a(2); % must be between x_0 and x_1 for the maximum

lambda = -c_1; % for the maximum

g_val = [g1(a), g2(a)l;

% compute the maximum length
L_max = c_1. *( sinh((x_1-c_2)./c_1) - sinh((x_0-c_2)./c_1) );
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3. Catenary (numerical solution of the constants):

The shape of a hanging chain of lendtlwas presented as the solution of the problem of minimizirtgptial energy
Wp{y} = mg/ yv1+y?dz,

under the isoperimetric constraint
ZT1
G{y}:/ 1+y?2de=1L.
To

We determined that the solution to this problem took the form

y = cicosh (ac—cz) — A

C1

where the constants, ¢; andc, are determined by the lengthof the chain, and the end conditions, i.e., the heights
of the polesy(xo) = zp andy(x1) = 2.

We determined a method to calculate the constants when thepn is symmetric, though this required numerical
solution of a non-linear equation. In this more general casecan make use of identity such as

-
L{y} = / 1+ y?dx

0

= /:1 cosh((z — ¢2)/c1) da

0

= ¢ [sinh((z — c2)/c1))];, -
Given a lengthl, > D whereD is the distance between the two pylon ends, write code to riaaily determine the
constantgcy, ca, \).

Solution: Given a lengthl, > D whereD is the distance between the two pylon ends, there will alvieeya valid
catenary, because we know we could hang a chain betweentthepeints (ignoring the possibility that it would drag
on the surface).

We solve by constructing a function which is the square ofdaé@ation from the three available constrairits:, we
define

gi(c1,¢2,A) = yo—cicosh (mo_@) Y
C1

g92(c1,¢2,A) = y1—cicosh (17162) = A
C1

gs(ci,co,\) = L —cp[sinh((z — 02)/01))]2 _

We then use Matlab’s optimization toolbox functifminsearch  to find the minimum of
gler, e, ) = gt + g5 + 65

Matlab code is provided below, as are some example results.
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Matlab code: for performing estimating catenary parameters is inclunsdw.

function [x, y, c_1, c_2, lambda, Lest, Fest, Lest_check, Fe
f_val, exitflag, output] = catenary_solver_gen(n, y_0, y_
%

% file: catenary_solver_gen.m, (c) 2012 Matthew Roughan
% author: Matthew Roughan
% email: matthew.roughan@adelaide.edu.au

%
%
% CATENARY_SOLVER: solves the shape of a hanging chain, whic

st_check, ...
1, x 0, x_1, L)

h we know will be

% y = c¢_lxcosh((x-c_2)/c_1) + lambda

% with fixed length

% L = c_1.*( sinh((x_1-c_2)./c_1) - sinh((x_0-c_2)./c_1) );

% but we need to work out the constants of integration c_1, ¢ _2 and lambda
%

% INPUTS:

% n number of points at which to calculate the curve

% y 0 = height of the left pylon (must be > 0)
% y 1 = height of the right pylon (must be > 0)
% x_0 = left pylon position
% x_1 = right pylon position
% L = length of chain
%
% OUTPUTS:
% X, vyl = n (x,y) points along the shape of the catenary
% c_1c 2 = constants of integration
% lambda = Lagrange multiplier
% Lest = estimated length, to be used in debugging
% Fest = an estimate of the functional which gives the potenti al energy of the chain
% Lest_check = a check based on estimated (x,y) positions (on ly valid for large n)
% Fest_check = a check based on estimated (x,y) positions (on ly valid for large n)
% [f_val, exitflag, output] = output from the optimization u sed to find the solution
%
if (y_0 < 0)
error(y_O must be >= 0);
end
if (y_ 1< 0)
error(y_1 must be >= 0);
end

if (x_1 <= x_0)
error(’x_1 should be > x_0);
end

if (nargin == 6) % L defined

[x, y, c_1, c_2, lambda, Lest, Fest, Lest _check, Fest_check
f_val, exitflag, output] = catenary_new_b(y_O, y_1, x 0, x

elseif (nargin == 5) % compute the natural catenary
lambda = O;

% create a function which we will minimize to find the solutio

% gl is the left end-point constraint

% g2 is the right end-point constraint

% remembering for this case, there may be one, zero, or two sol
gl = @@) (y_0 - a(l) =cosh( (x 0 - a(2)/a(1) ))."2;

g2 @@) (y_1-a(l) =*cosh( (x_1 - a(2)/a(l) ))."2;

g = @(a) gi(a) + g2(a);

a_est = [0.1, (x_1+x_0)/2]; % case with smaller c¢_1 is usuall
options = optimset('fminsearch’);
options = optimset(options, 'MaxFunEvals’, 100000);

utions

y the min

11
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[a, fvall, exitflagl, outputl] = fminsearch(g, a_est, opti

c_ 11
c_21

a(1);
a(2);

Fest 1 = c_11 *(x_1 - x 0)/2 + ...

c_11"2 *=(sinh(2 *(x_1 - c_21)/c_11)-sinh(2

a_est = [100, (x_1+x_0)/2]; % case with larger c_1 is importa
optimset(‘fminsearch’);
optimset(options, 'MaxFunEvals’, 100000);

options
options

[a, fval2, exitflag2, output2] = fminsearch(g, a_est, opti

c_12 = a(1);
c_22 = a(2);
lambda = 0;

Fest 2 = c¢_12 *(x_1 - x_0)/2 + ..

c_1272 *(sinh(2 =*(x_1 - c_22)/c_12)-sinh(2

f_val = [fvall, fval2];

if (fvall > 1.0e-6 & fval2> 1.0e-6)

% no solutions
c_1 = NaN;
c_2 = NaN;
exitflag=exitflagl;
output=outputl,;

elseif (Fest_1 < Fest_2)

c_1 = c 11,
c_2 = c_21,;
exitflag=exitflagl;
output=outputl,

else
c_1 = c 12
c_2 = c 22

exitflag=exitflag2;
output=output2;
end

end

% check the length is correct
Lest = c_1. *( sinh((x_1-c_2)./c_1) - sinh((x_0-c_2)./c_1) );

%

% now calculate points on the curve

%
X
y

x_0:(x_1 - x_0)/n:x_1;
c_1 *cosh((x-c_2)/c_1) + lambda;

% second check of the length
Lest_check = sum(sqrt(diff(x).”2 + diff(y)."2));

% calculate the potential a few different ways to compare

Fest_ 1 = sum(y(l:end-1).

* sgrt(diff(x).”2 + diff(y)."2));

Fest 2 = c 1 *(x_1 - x 0)/2 + ...

c_1"2 =(sinh(2 *(x_1 - c_2)/c_1)-sinh(2

lambda * Lest;

% Fest.3 = ¢ 1+*(x_1-x20)/2+ ..

% c_1*((y_1+lambda)
% lambdax Lest;

*sinh((x_1 - c_2)/c_1) - (y_O+lambda)

% Fest 4 = c_1=*(x_1-x0)/2 + ..

% c_Ix(y_1 *sinh((x_1 - c_2)/c_1) -y O

% lambdax* Lest/2;

Fest = Fest_2;
Fest_check = Fest_1,;

«(x_0 - ¢ _2)c_1))4 - ...

ons);

*(x_0 - c_21)/c_11))/4,

nt to check for as well

ons);

*(x_0 - c_22)/c_12))/4;

*sinh((x_0 - c_2)/c_1))/2 - ...

*sinh((x_0 - c_2)/c_1))/2 - ...

12
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Remarks:
and

F{y} ¢y cosh((x — ea)/c1) — \/1+smh ((x —e2)/c1)d

-
_ / c1 cosh?((z — ) /1) d — AL
[ s

[1 4 cosh(2(z — ¢2)/c1)] dx — AL

_ %(zl o) + [% sinh(2(z — 62)/01)} i —AL

— o)+ [ Finhi(a = )/t
= Gle—w0)+ [§sinh(@ o)/ + 2] - AL

= L —w0)+ L yla) sinh((z — e2)fe)]3) - %

which were given in lectures.
sinh(2z) = 2sinh(z) cosh(z), and cosh(2x) = 2 cosh?(z) — 1,

If y1 = y» we get the symmetric case, which has= (z; + z2)/2, and from above

Fly} = Sl —a0)+ %1 [y(x) sinh((z — ¢2)/e1)]7! — %
= %1(351 —20) + 91— )\L

When\ = 0, we get the natural catenary, and so this must give the lovedse for F'{y} for any L, and hence) < 0
for all other cases.

The first question we might therefore wish to answer is thghdacation ofcs.
We can just try each of the cases above, and see which one works

Ymin = €1 — A OCCUrs wherx = ¢o, and the derivative will be zero — could be in the middle, er It or right of the
interval of interest

Start withy and approximateosh using first two terms of Taylor series:

3 5
sinh(z) = 2+ % + 1:6—20 +
z? ozt
h = 14+ —+—+..
cosh(zx) + 5 + ol +

so that

y+A = clcosh<$62),

13
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Taking the values at, andx;, and subtracting we get

2 2
1 — C2 g — C2
261 261

2c1(y1 —yo) =~ (21 —c2)* — (w0 —c2)?

= (x% - ffg) —2(z1 — x0)c2
(27 — 2§) — 2(x1 — 20)2¢o
C1 ~
2(?/1 —Y0)
~ «a+ fBes

so there is an approximately linear relationship betwaesindc,. Substitute this into the equation far and we get
a single non-linear equation which we can solve to get anaqipiate value fors, and hence; (by the above) and
hence\ by the edge equations.

This gives us an initial guess as to the values;ot; and\ which we can refine to get an optimal value.

14
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4. Direct Approximate Solution: One of the classic problems in the CoV is the catenary proplenich we solved
analytically early in the course. The problem reduces tammising potential energy

L 1
Wply} = mg/ y(s)ds = mg/ y\/ 1+ y?d,
0 xo

subject to the end-point conditions (the fixed heights ofgylens), and the length constraint:

ot = [ vios = [ VTFRa - L

Ignoring the constantg, we solved this using Lagrange multipliers, instead sepk&ittremals of
T
H{y} :/ (y+MV1+y?d.
)

Now we consider the numerical approximation and solutiothisfproblem. We could apply Euler’s finite differences,
or Ritz, but instead consider a chain of lendttmade ofn pieces of lengtlf (wherenf = L). Assume each chain
link ¢ starts at the pointz;, y;) and ends atx; 1, y:+1), fori =0,1,...,n — 1, wherey; > 0 andx; € [z,, 23]. The
length constraint on each link means that

= (zip1 — 2i)> + (i1 —i)%, Vi=0,1,2,... ,n—1

The start and end points of the chain are fixedaat yo) = (24, ys) and(z,, yn) = (zs, yp) respectively, and we
assume thab = \/(zb —14)? + (y» — ya)? < L to allow for a solution.

The objective function that we aim to optimize is to minimthe potential energy of the chain, where the potential of
each link will be given by the height of its mid-point, times@nstant{g), i.e.,

n—1
W =mg Z Yi T Yit1 2y1+1.
1=0

Note that the constant factors are irrelevant, and the sumoertinas so that we can rewrite it

n—1
W= Z Yis
=1

where we ommit the values of the end points because theseade fi

Use a numerical optimization algorithm to find the shape efdhrve that solves this problem, and show numerically
that it approaches the analytic solutionas» co.

Solution:
We can solve the problem by including a Lagrange multiplergfach of the constraints, i.e.,

n—1 n—1
fxy,A) = Z Yi + Z X [ = (i1 — 20)? = (Yir1 — v)?] -
i=1 =0
for some Lagrange mutipliers.

To apply Steepest Descent, starting at some pgjntve need to calculate the gradient. The gradient of thistfands
derived as follows:

0

a@f; = 2)\i($i+1 7$i)*2)\i—1($i*zi*1)v

0

(’)3‘; = 1+2XNWirr —vi) = 2Xi-1 (i — vi-1),
of

Y [07 — (zig1 — i) — (yis1 — ¥)?]

15
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except fori = 0 andi = n, where the end points are fixed 8¢ /0x; = 0f/dy; = 0. The Hessian matrix is hence
almost tridiagonal, though we don't need this for the Stsepescent Algorithm.

Take the case with even, and then the starting point can have the chain linkszig-aag. Construct it as follows.
Draw the line interpolating betweén,,, y,) and(xy, ys), i.€.,

— yb_yll(
Tp — g

T — q) + Ya,

which has length

D= /(xy — xa)? + (3 — ya)?.
Now distribute a set of points, evenly along a line of length

z; =iD/n.
and alternate thg; positions to satisfy the length constraint on each segment:

' Ya, if 1 =2k,
Yi=\ yatd ifi=2k+1,

whered is chosen to enforce the length constraint on each segment, i

d= /2= (D/n).

The pointg«.y;) are then rotated b about(x,, y, ) to meet the other end-point constra(nt, v, ), where the rotation
takes the form

i\ cos(f)  sin(6) X — xq 4 Ta

yi )\ —sin(f) cos(f) Y — Ya Ya

cos(f) =

where

n(g) = W

Matlab code: for performing the steepest descent is provided below:

16
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Figure 3: .

17
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5. Rayleigh-Ritz:
Consider the following problem — find the extremal curveshaf tollowing functional:

F{y} = /0 y'2 —2¢(x)y dx,

for twice differentiable functiom(-), andy(0) = y(1) = 0.

(a) Solve this problem using the Euler-Lagrange equatioigeneral, and in detail for the special cases
i. g(x) =sin(27x).
i. g(z) =u.

(b) Now use the Rayleigh-Ritz method to solve the same prablesing the approximation

N
gn =bo + Z ap sin(2wnx) + by, cos(2mnx).

n=1
Solution:

(a) The Euler-Lagrange equations are

d of Of d_, "
de 0y’ Oy dx v +29(x) y'+29(x) =0

The solution is just to integrate twice, resulting in
y = —/g(u) du + ¢;
y = —/ g(u) dudv + c1z + ca,

wherec; andcg are chosen to satisfy(0) = y(1) = 0.

i. So for the particular casg(x) = sin(27x), where the double integral will be sin(27z) /472, which is zero
at the end-points, the extremal takes the form

1.
y(z) = o= sin(27x).

ii. Forthe caseg/(x) = z, the double integral will be /6, so the extremals are

23
y(x) = 5 +c1x + co.

Using the end-point conditiong0) = y(1) = 0 we get

2 x z(l—2?)
Vo) =5 5= "%
(b) Given the approximation, we get
N
gn = bo+ Z ap, sin(2mnz) + by, cos(2mnx),
n=1
N
gy = 2m Z na, cos(2mnx) — nb,, sin(2rnx),
n=1
N N
e = 4n? Z Z nm [anam cos(2rna) cos(2rma) — aynbp, cos(2rna) sin(2rma) + byby, sin(2rna) sin(2rma)).
n=1m=1

18
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When we integrate, we can use

1
1
/cos(27mac) cos(2mma)dr = §6mn
0
! 1
/sin(27rnx) sin(2rmz)dx = §5mn
0
1
/sin(Qﬂ'nac) cos(2rmz)dr = 0
0

So the “cross-terms” in the above integrals vanish, and wéedtrwith

Fly} /0 y'? + 29(x)y da

N N 1 N 1
F(a,b) = 272 Z n?(a? +b2) -2 Z an /0 g(x) sin(2rnz) da — 2 Z bn/0 g(x) cos(2mnz) dx
n=1 n=1

N N N =
= QWQZTLQ(ai‘f'bi) - ZanAn _anBn7
n=1 n=0

n=1

wherea,, = 2 [ g(z) sin(2rnz) dz andB,, = 2 [ g(z) cos(2mnz) dz are the Fourier series coeeficients §or)

(assuming we repeat the function[on1] periodically). We can now take the derivatives, andfot 1,2,..., N
we get
iF(a b) = 4r?n%a, - A
dan ) n n
= ()7
4 pab) = 420, — B
dbn ) n n
= 0,
or
An
In = g2
By,
bp = ——.
472n?2

Note that the),, terms don’t depend on, so we simply expand until we have enough of these terms teecga.
We don't get a condition faby, but we have the end-points conditions to consider, anchgivg0) = cos(27) =
1, and we requirg(0) = y(1) = 0, we choose

In the specific cases of interest:
i. Wheng(x) = sin(27x), the Fourier coefficients are

1, forn=1,

An = { 0, otherwise, and B, =0,

so for alln we get the exact solution:

1
Jn(x) = ype) sin(27z).

19
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ii. Forthe casg/(x) = x, we consider the Fourier coefficients for the “saw-toothidtion, i.e.,

A, =

B, =

1
2/ xsin(2rnx) de = ——,
0 ™m

1
1
2/ x cos(2mnz) de = —
0 2

5 actuallyO,
n

~ 1 ~ 1
Un () = bo + Z —— sin(2mnz). + Z ——5 5 cos(2mnx).
= 4dmin ‘= 8men

The following figure shows this approximation for = 1,2, 3, ..

If we just took a Fourier expansion of1 — z2) we get

/le(1x2)d;r

1
= 2/ z(1 — 2?) sin(27nz) do
0

an
bn

( )
2/0 x(1 — %) cos(2mnzx) dx

. versus the actual extremal curve:

= 1/4

3
2m3n3
3

2m2n2

20
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6. Another Problem (not finished yet):
Consider the following problem — find the extremal curveshaf tollowing functional:

1
F{y} =/0 y'? —y?du,

for y(0) =1 andy(1) =e.

(a) Solve this problem using the Euler-Lagrange equations.
(b) Now use the Rayleigh-Ritz method to solve the problemgitiie trial functions

o0
y= g a;x".
i=0

Derive a set of conditions on the and use your solution to the previous part to solve theseitionsl.

Solution:

(a) The LHS of the Euler-Lagrange equation is

d of d
oy 17 E(Q?/) — 2y,

Sothe DEis
y// —y=0.
This is a linear, homogeneous DE, with characteristics gouan? — 1 = 0, som = =1, and therefore the

solution is in the form
y(z) = Ae' + Be™".

From the end-point conditiong0) = 1 andy(1) = we get the constraints
A+B = 1,
Ae—B/e = e.
which has solutiod = 1, B = 0, and therefore
y(z) = e

(b) Use the an approximation function

yn(x) =1+ (e — D)z] + Zaixi(l - ).

yn(x) =1+ (e — )x] + Z a; sin(2miz).

i=1
i. Giveng =37, a;z" we get

oo
2 _ i+j
y© o= E a;a;x",
i,j=0

oo
12 2 Z-jaiajz1+]72
ij=1

<
I

oo

= D+ 1)+ Dagrana™,
i,j=0

21
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so the integral can be written
1
Fly} = / §* — g da,
o0
— / Z t+1(G+1) a1+1a]+1z — Z aiaj:rz'” dx,

=0 1,7=0
1 . .
= g [(Z =+ 1)(] =+ 1)ai+1aj+1 — aiaj] / :rl-l—j d:r7
=0 0

-~ 53(i+1ﬂj+1Mm4%+1—amj
i+j+1

4,57=0

i (i +1)(j +1)air1aj41 — aia; n i i+ 1%, —a
) 1+j5+1 2i+1 ’
1,717 i=

Now to find the minimum, we set the partial derivatives to zemd we therefore get (far> 1)

OF(a) — i(j + 1)aj41 - —a; ila;  —ay
frd _ - - 4 3
da; Z it +Z,i+j+1+ PR (3)

JigFi Juj#i
> ’L(j + 1)aj+1 S —a; iQai a;

= ) —— - 4
) B D DY e i I AR I Ty @)
7=0 7=0
i+ Daji1 | o —aj41 ag ita; —a;

= - — =0. 5
it +§i+j+2 iv2 2-n "o ®)

We also know from the end-point conditions that

ap=1 and Zai:e.
i

This represents a set of relationships betweerthehich might be quite hard to solve, however, we already
know that there is a solution in this form:

o
=Y
1!
=0

so if we taken; = 1/i! we should get a solution.
First note that with the above choiag = 1, and

iai = il/i! =e.
i=0 =0

Now substitute these; into the relation (5) and we get
ii. Do you get the same solution?
iii. Why did we choose the particular valuesaf anda; as the first terms of the sequence?
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7. More on Rayleigh-Ritz:
In R-R we use an approximation, typically of the form

Yn(r) = ¢o(x) + Z cidi(x),

to approximate the function

F{y} :/ 1 f(z,y,y) dz,

by .
F(Clcha"'vcn):/ f(zaynvy;,)dx
Zo
0

where¢, satisfies the boundary conditions gandg; (z;) =
Show ...
Solution:

The Leibniz integral rule says that fgrandd f /0x continuous over the regidm, 1] X [yo, y1] we can differentiate
an integral in the following form:

d Y1 Y1 a
E/yo f(fc,y)dy=/y0 %f(l’,y)dy-

F(er,ca,...,¢0)

| v s

/zl f (.T, ¢0 + Z Ci¢i7 ¢6 -+ Z Ci¢7;> dx

zo i=1 i=1

/:1 %f (177 ¢o + Zci¢i7 b + Z Cz‘@) dx

8CiF(01,02, ceeyCh)

0 i=1 i=1

_ [Tof,  oF
— /IO 8y¢1+ay,¢id:p

L rof d of
L{%wwhm”
= 0, Vi=1,2,...,n.

using the chain rule and integration by parts (noting thét;) = 0 fori = 1,2,...,n). Obviously the above would
be satisfied if the Euler-Lagrange equations were satidflediever, the underlying assumption of numerical methods
is that the Euler-Lagrange equations are difficult.

When we substitutg,, into the above formula we get

flﬂ_iﬁ -
oy dxoy | “

g($7¢17"'7¢na¢lla---a¢;z)¢i(x)d:r7
= 0, Vi=1,2,...,n.

F(ey,ea,...,¢n)

8 C;

Il
&!\
=} 8
S

and if this can be calculated, we can then determine valuestofapproximate the extremal.
However, Galerkin noted that an alternative
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8. Rayleigh-Ritz: Find approximate solutions to the following DE

d*u 9
— =36t + 12t —4
e 36t° + ;

subject to the boundary condition$l) = u(—1) = 0, using Rayleigh-Ritz by constructing an appropriate fioral,
and approximating using

n
Up =Y et (7 - 1),
i=1

forn = 1,2 and3, and comment on the accuracy of these solutions.
Solution: The true solution to this is
u(t) = 3t* + 2% — 2t — 2t — 1.

We can construct a functional for this problem

11 fdu\?

F{u} :/ — (=] +36t% 4+ 12t — H)udz.
12\ dt

The Euler-Lagrange DE is the equation to be solved.

Given the approximation:

U, = Zciti_l(thl),

=1
up, = Y (=Dt —1)+ ) 2t
1=1

=2

~

Use Matlab’s symbolic manipulation toolkit, we construlee tfunctional for these cases, and then differentiate, to
obtain a set of equations for tlag

CODE
The results are:
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