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Continuous Fourier
Transforms

Fourier's Theorem is not only one of the most
beautiful results of modern analysis, but it is
said to furnish an indispensable instrument in

the treatment of nearly every recondite
question in modern physics.

Lord Kelvin
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Jean Baptiste Joseph Fourier

M son of a tailor (in Auxerre, France)
M 12th of 15 children

B involved in the French revolution
B atf one point was arrested

B 1798 Fourier joined Napoleon's
army in its invasion of Egypt as
scientific adviser

B helped in archaeological
explorations.

B 1802 made Prefect of Grenoble

B work on heat propagation, and
Fourier series

March 21, 1768 — B survived Napoleon's arrest, and
May 16, 1830 return, and exile
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Fourier series

Can write a periodic function as an (infinite) discrete
sum of trigonometric terms, e.g. for period 21t

1

f(X) = éao+ i an cog NX) + i b sin(nx)

ay = %/if(x)dx
an, = %[/nf(x)cos(nx)dx

bh = %[/T;f(x) sin(nx) dx
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Fourier series as a representation

Fourier series is representing the set of functions with
period 21in terms of the basis functions cosand sin,
exploiting orthogonality of these functions

/ncos(nx)dx = 0 /ncos(nx) cogmx)dx = TOmn

—Tt —Tt

/nsin(nx)dx = 0 /nsin(nx) sinimx)dxX = TOqn

—T1 —T

/n sin(nx) cogmx)dx = O

—Tt

1, ifm=n

Omn iS The Kronecker delta, &y = .
0, otherwise.
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Complex Fourier series

Can write Fourier series in complex form

f(X) = i A

N=—o0

An = i/n f(x)e "™ dx
2T 1

NB: ™ = cognx) + i sin(nx)
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Fourier series for other periods

For a function with period L, we need to scale the basis
functions by 2m/L

_ i AneiZT[nX/L
N=—o0
L/2
/ —|2T[nx/L dx
L L/2
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Example Fourier Series

Fourier series for the saw-tooth f(x) =x for x=[—L, L]
Saw-tooth
2_I 1
1_
O-
_1-
_2-| |
-6 -4 -2 0 2 4 6
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Example Fourier Series

Fourier series for the saw-tooth f(x) =x for x=[—L, L]

1 Fourier component

A Ay
IWARVAY.
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Example Fourier Series

Fourier series for the saw-tooth f(x) =x for x=[—L, L]

2 Fourier components
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Example Fourier Series

Fourier series for the saw-tooth f(x) =x for x=[—L, L]

3 Fourier components

y y y
1 J J J
| y 4 y
J J J
P4 4 Y/
1V J J
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Example Fourier Series

Fourier series for the saw-tooth f(x) =x for x=[—L, L]

4 Fourier components

o
y y y
1 // // //
0 J J J
| 4 4 4
/ / 4

-\ 4 4
1y / /

_é —4 —é (I) 2 4 6
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Example Fourier Series

Fourier series for the saw-tooth f(x) =x for x=[—L, L]

5 Fourier components

, :
) ) )
. // // //
/ Y, /J
_ 7 7/ /
I Y, Y, Y,
7 7 7

-1 ,/ ,/ ,/
X VA /

-6 —4 -2 0 2 4 6
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Example Fourier Series

Fourier series for the saw-tooth f(x) =x for x=[—L, L]

6 Fourier components
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Example Fourier Series

Fourier series for the saw-tooth f(x) =x for x=[—L, L]

7/ Fourier components

T ) ) X
/I /I /I
1- // // // |
// // //
O-
4/ "/, "/,
// // /)
-1 /4 /4 /4
Y \ Y \ Y

kA W | 4

-6 —4 -2 0 2 4 6
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Integral transforms

m An integral transform is a fransform defined in
terms of an integral

f(t) —>/f(t)g(t s)dt

m Map a function (say of time) to a function of s
m g(-) is called the kernel of the transform

m notation (several alternatives)
mT{f(t);s} = [ f(t)g(t,s)dt
F(s)= [f(t)g(t,s)dt, H(s) = [h(t)g(t,s)dt
F(s) = [ f(t)a(t,s)dt, H(s) = [ h(t)g(t,s)dt
m f(s) = [ f(t)g(t,)dt
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Fourier Transform

Fourier transform F(s / f(t "Z“Stdt

Inverse transform f(t / F(s 'Z”Stds

We are writing function f(t) as a continuous integral of
trigonometric functions, weighted by F(s).

m think of as a representation of a function
m sines and cosines are forming a basis

m integral transform with kernel function g(s,t) = e 4™
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Example: FT of a delta function

From the definition of FT

F{d(t—tg)} = /_ o:o S(t —tp) e '™t

fr'om the definition of a delta
/ F(1)3(t —to) ot = f(to)

_ e—iZT[sto
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Gaussian

1 w2

f(x;p,o)zﬁT
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Example: FT of a Gaussian
From the definition of FT

Fle™) =

—|2T[Stdt

2
e t +|25t

\\8
®

—00

_ e—T[SZ/ T(t+is)?
= e / e ™ du

= e s’
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FT of some simple functions

Function | Transform Function | Transform
5(t) 1 1 o(t)

O(t —tp) | e '2mes 2Tl d(s— %)

r(t) sings) sinqt) r(s)

el T meern | €

g T’ e ™ g T’ e ™
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Deriving a Fourier Transform

We can derive a Fourier transform from scratch, but
that can sometimes be hard work. It can be easier to
use transforms we already know (and their properties).

e.g. exploiting linearity (see later)

F{coq2mset) }

F{sin(2msot) }
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00}

/ cog 215t ) €4St it

T{% [e—iZT[Sox_|_ eiZT[SoX} }

%T{e—imx} + %f{émx}

1 1
?5(S+ S) + 26(8—80)
| |

55(S+ S) — 55(8—50)



FTs of sin and cos
\

Real

Fcos(t)

Imag

>
Frequency, s

Fsin(t)
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The Fourier Transform: definitions

Multiple possible definitions

Fourier transform Inverse
/ f(t)e 2™tdt :/ F (s)€“™'ds
F(w) = f(t)e‘i‘*’t dt f(t) = %T F(w)e“ dw
1 /= ot 1 /= "
Flw=— [ fH)e'dt| ft)=— | F(we*dw
2T — 2T
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Wave terminology

Definition: Amplitude is the extent of a waves
oscillation, e.g. a signal f(t) = Asin(t) has amplitude f(t).

Definition: Magnitude is the absolute value of amplitude,
e.g. for f(t) = Asin(t) the amplitude is |f(t)].

Definition: Power is the square of magnitude, e.g. for
f(t) = Asin(t) the power is p(t) = |f(t)|°

Definition: RMS Power is the root mean squared power,

given by
m — 2
\/T“eoo ZT/ )

For f(t) = Asin(t), the RMS power is A/v/2, e.g. the RMS
power of a sin wave is 0.707 times the peak value
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RMS power of a sin wave

........................................... .A.........................R.M§.PQW.¢.F
A
Asin(t)
V 21‘[>
Tt
A /__ginz(t) - 1—cgs(2t)
NG
// \\ // N
/ -
Tt

Transform Methods & Signal Processing (APP MTH 4043): lexR2 — p.19/54



RMS power of a sin wave

The sin wave is periodic so we may consider

1o
il / Asin(t)|2dt
Tt

21T/

A21/ 1— cog2t) dt

— A21U 1dt — /cos(zt ]

1
— A 0
o -0

A2

2

To get the RMS power, take the square root, resulting in
A/V2.
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Measuring power

m power iS a square, so can take wide ranging values.
m use a log scale to measure

m ear itself 'hears’ logarithmically and humans judge
the relative loudness of two sounds by the ratio of
their intensities, a logarithmic behavior.

m the typical scale used is Decibels (deci- from ten,
and Bel from Alexander Graham Bell).

m defined WRT a reference power level pret

power = 10 log,y— P 4B
Pref

m p=nr, so we may write power = 20 log;o7-dB
m 3 dB corresponds to a factor of 2 in power'
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Decibels and sounds

Sound Pressure | Sound Intensity
Example | Level (dB) (watts/m?)
Snare drums, played hard at 6 inches | 150 1000
30m from jet aircraft | 140 100
Threshold of pain | 130 10
Jack hammer | 120 1
Fender guitar amplifier, full volume at 10 inches | 110 0.1
Subway | 100 0.01
90 0.001
Typical home stereo listening level | 80 0.0001
Kerbside of busy road | 70 0.00001
Conversational speech at 1 foot away | 60 10-°
Average office noise | 50 10~
Quiet conversation | 40 108
Quiet office | 30 109
Quiet living room | 20 10-10
Quiet recording studio | 10 10~
Threshold of hearing for healthy youths | O 1012
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Power Spectra

Definition: The Power Spectrum of a signal f(t) is |F(s)|?,

where F(s) is the Fourier transform,

F(s) = /_ O:o f(t)e 12t o

m The power spectrum defines the amount of power at
each frequency.

meg. |[F(0)|°is referred to as the DC term.

m for real-valued signals the power spectrum is even
F(=s)*=[F(9)]°

(because the Fourier transform of a real input will

be a Hermitian signal).
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Phase

m the sin and cosine
functions have the
same frequency

sin(t)

m >  mcodt)=sin(t+11/2)

m there is a phase
change of 11/2
A

Real

cos(t)

Fcos(t)

Imag

>
Frequency, s

Fsin(t)
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Properties of the Fourier transform

Linearity: afi(t) +bfa(t) — aFu(s) +bR(s)
Time shift: f(t—to) —  F(s)g %™

Time scaling: f (at) — ‘;’F( )

Duality: F(t) — (-5

Frequency shift: f(t)e "2t —  F(s+%)
Convolution: f(t) = fo(t) —  Fi(s)F(s)
Differentiation I: | &f(t) —  (i2ms)"F(s)
Differentiation II: | (—i2mt)"f(t) — ZiF(s)
Integration: [t f(s)ds —  A_F(s)+ 1 (0)3(s)
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Properties: Linearity

F1afi(t) +bh(t)} = ak(s) + bR(s)

/_ " fafy(t) + bhy(t)] e 127t

_ / f —|2T[Stdt_|_b/ f —I2T[Stdt

— S) + bR (s)

m very useful property

m we can use this to derive Fourier transform,
e.g. for cosabove

m see more on linearity when we discuss filters
(lecture 5-6)
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Properties: time shift

F{f(t—tg)} = F(s)e 120

/ f(t—to)e '7™tdt / f(t)e 12t g

= e [ f(t)e 2y
— g '9BoE(g)

Note [F (s)e 2| = F ()] x | 2| = [F(s)
So the magnitude of the FT is unchanged.

This represents a phase change. The higher the
frequency, the larger the phase change.

Transform Methods & Signal Processing (APP MTH 4043): lex@R2 — p.27/54



Properties: Time scaling

F{f(at)} = &F (2)

00 . 1 (= : X at
flae iZstdt = — / f(x)e 12Ms/ax gy
/_m( ) a Wt dt = Ldx
1 S
i
al \a
signal segment of [DFT|
0:0\2/\/6\A[ 2OZO 2 ! 6 8 10
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Properties: Duality

FiFO)=T(=9)

Consider the Fourier transform of F(t):

/ F(t)e '#™dt = / F(t)e?™-9dt, the inverse trans.
= f(-s

m the table of Fourier transforms above shows pairs
of duals, e.g.

F{r(t)} =sinds) and F{sindt)} =r(t)
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Properties: Frequency shift

F{f(t)e'™'} =F(s+s)

/oo f(t)e—iZT[Sote—iZT[Stdt _ /oo f(t)e—iZH(S+So)t dt

= F(s+%)

m used for signal modulation, e.g. FM radio
m simpler using a cos function (see below)
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Properties: Modulation

F{f(t)cog2msot)} = 3F (s—0) + 3F (5+ o)

For proof, see freq. shift above noting cosx= 3 (e +¢€¥)

signal f(x) segment of |DFT]| of f(x)

1 800

600

400

200

0 2 4 6 8 10 12 0 2 4 6 8 10
modulated signal f(x) * cos(x t) segment of |DFT]| of f(x) * cos(x t)

Can use this to generate higher frequency signals, or to

demodulate signals.
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Convolutions

What is a convolution?

F(t) #g(t) = [ gt / f(u)g(t —u)d

sighals

convolution

J\\ SOR-

=50 -25 0 25
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Properties: Convolution

Fifa(t) « f2(t)} — Fa(S)Fa(s)

F{E(t)*gt)) = {/ f(Uu)g(t — udu}
U e

gt — udu] g 12Tt ot

/ g(t —u)e "“™Stat du

/ f |2T[sudu
_ / f — 218U du
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Convolution example

Convolution of two rectangular pulses r(t) where

(1) = u(t +1/2) ~ u(t ~1/2), and u(t) = { 0, t<0

rt)xr(t) = /_O:Or(s)r(t —S)ds
0, ift<-—1

r(s)r(t—s)ds, if —1<t<0

r(s)rt—s)ds if0o<t<1
0, ift>-—1
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Convolution example

For —1 <t <0, the convolution r(t)r(t) is

|.A

r(t)sr(t)

1/2-+t "t
/ r(s)r(t—s)ds
~1/2

1/2+t ~1/2 1/2 t
= / 1ds
_1/2

1/2+t
= [t]Z

1/24t——1/2
14,

Similarly for 0<t <1, we get r(t)r(t)=1—t
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Convolution example

Result is a Triangular pulse
0, ift<-—1

1+t, if —1<t<0
1-t, ifo<t<l1
0, ift>-—1

F{r(t)} =sinds) hence from the convolution theorem

F{r(t)*r(t)} =sinc(s)

rt)<r(t) = <

signal abs(Fourier transtorm)
2 100
1.5 80
60
1
40
0.5 20

L — 0 1 2 % 20 40 "
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Limiting convolutions
Fir(t)} =sings) = F{r(t)*r(t)*---xr(t)} =sind'(s)

m n convolutions of a rectangular pulse produces a
function with FT given by sinc'(x), which tends to a
Gaussian as N — oo,

m The inverse FT of a Gaussian is also a Gaussian so
the limit of r(t)«r(t)---xr(t) is a Gaussian pulse.

signal abs(Fourier transtorm)

1 convolution > 100

15 50

60
1

40

0.5 20

0)
—2 -1 . 1 2 . Q 2
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Limiting convolutions
Fir(t)} =sings) = F{r(t)*r(t)*---xr(t)} =sind'(s)

m n convolutions of a rectangular pulse produces a
function with FT given by sinc'(x), which tends to a
Gaussian as N — oo,

m The inverse FT of a Gaussian is also a Gaussian so
the limit of r(t)«r(t)---xr(t) is a Gaussian pulse.

signal abs(Fourier transtorm)

2 convolutions 5 100

15 50

60

1
40

o /\ 20
0 0

—2 -1 . 1 2 . Q 2
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Limiting convolutions
Fir(t)} =sings) = F{r(t)*r(t)*---xr(t)} =sind'(s)

m n convolutions of a rectangular pulse produces a
function with FT given by sinc'(x), which tends to a
Gaussian as N — oo,

m The inverse FT of a Gaussian is also a Gaussian so
the limit of r(t)«r(t)---xr(t) is a Gaussian pulse.

signal abs(Fourier transtorm)

3 convolutions 5 100

15 50

60
1

40

0.5 /{\ . \
0 0

—2 -1 . 1 2 . Q 2
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Limiting convolutions
Fir(t)} =sings) = F{r(t)*r(t)*---xr(t)} =sind'(s)

m n convolutions of a rectangular pulse produces a
function with FT given by sinc'(x), which tends to a
Gaussian as N — oo,

m The inverse FT of a Gaussian is also a Gaussian so
the limit of r(t)«r(t)---xr(t) is a Gaussian pulse.

signal abs(Fourier transtorm)

4 convolutions 2 100

15 50

60
1

40

0.5 /\ 20 \
0 0

—2 -1 . 1 2 . Q 2
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Limiting convolutions
Fir(t)} =sings) = F{r(t)*r(t)*---xr(t)} =sind'(s)

m n convolutions of a rectangular pulse produces a
function with FT given by sinc'(x), which tends to a
Gaussian as N — oo,

m The inverse FT of a Gaussian is also a Gaussian so
the limit of r(t)«r(t)---xr(t) is a Gaussian pulse.

o S|gnal abs(l—ourler trans’rorm)
5 convolutions 5 100
1.5 80
60
1

40

0.5//\\ 20 \
0 0]

—2 -1 . 1 2 . Q 2
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Convolution example: interpolation

/\

0 2
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Convolution example: interpolation

Fourier transformation of a piecewise linear function

f(t)= i fid(t —t) | =r(t)=r(t)

IS

F(s) = i fie 2™t | sinc?(s)
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Properties: Diff. &if(t) — (i2ms)"F(s)

-T{dt” )} = (i21s)"F (s)

d . @ df — | 27115t

T{dtf()} - Joedt a

_ /oo lim f(t +At) o f(t) e—iZT[Stdt
— o0 At—0 At
_ AllmOA_ [/ f —I—At) —|2T[Stdt / f I2T[Stdt]
o ( )e|2nsAt _ F(S) B _ @2msit _ 4210
- AI'! o At =F(9) All o At
= F(s) 9 gorst|  _ i 21SF(3)
dt —0

and repeat (induction) for higher powers.
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Properties: Differentiation I1

F{(—i2nt)"f(t)} = LF(s)

Similar to previous result,
but with respect to inverse Fourier transform.
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Example: FT of a Gaussian

Another proof of the FT G(s) of a Gaussian g(t) =e ™.

Note that
g'(t) = —2mtg(t)

From the differentiation property
F{g ()} =i2nsQ(s)
From the dual differentiation property
F{-izntg(t)} = G(s)

i7{g(t)} = G(s
-21msG(s) = G'(s)

Standard DE solutions give G(s) = Ae ™, and the

constant A= 1 can be derived from the s=0 term.
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Some useful rules for FTs

F(=$)

/Oo f(t)e—iZT[(—S)t dt

= / f(—t)e'“™at

Evenness/Oddness of F(s) is related to the properties
of f(t).

m eveh function < even transform
m odd function < odd transform
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Some useful rules for FTs

_ /oo f*(t)e—iZTI(—S)t dt

/ f*(_t)e—iZT[Stdt

m real even function < real even transform
m real odd function < imaginary odd transform
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Some useful rules for FTs

real even function < real even transform

Magnitude of Fourier transform of a cosine function.

10%°

1010 i

10

-10

10

10

107 :
~500 0 500

frequency (kHz) _
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Properties: Existence

Sufficient conditions
m [“_|f(t)|dt exists
m There are a finite number of discontinuities in f(-)
m f(-) has bounded variation

The Fourier transform exists for physical signals:
Some conditions above may be technically violated, e.g.

m DC current.

m infinite sin wave

m O(X)
For first two, can multiply by term like e @, with small
a > 0 fo make integrals exist.
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Properties: Invertible

If the conditions for existence are satisfied.

ft) = 7 H{F{f()}}
f(t) — /_0; [/Zf(t)eizmtdt] 2t s

Where f(t) is discontinuous, the equation should be
replaced by

) )] = FHEEO)
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Trigonomeftric basis

m similar to Fourier series: trigonometric functions
used as a basis.

m here, can't assume fixed periodicity

® hence must include all sins and cosines

m think of f(t) as containing a mix of periodic
functions with different periods

m result is a continuous frequency spectrum
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Measurement of spectra

The (continuous) Fourier transform allows us to examine
mathematically the spectra of continuous functions, but

is rarely useful in analyzing real signals. However, in
some cases we can observe the spectra of real signals
directly.
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Measurement of Spectra

m how can we use the Fourier transform in practice?

m real signals are effectively continuous

®m sound waves are made of atoms
= EM waves are made of photons

m how can we analyze frequencies?
m we don't have an analytic function
m we can't do the math directly
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Measurement of Spectra

We can measure spectra directly in some cases

m radio frequencies, use a spectrum analyzer
m old ones are analogue

m think of as a bank of filters for each frequency
m make copies of the signal

m filter each copy for a particular frequency
component

m one filter per component you want to see
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Measurement of Spectra

We can measure spectra directly in some cases

m light (can use massively
parallel analogue devices)

H prism
m diffraction grating (a CD)

m Fabry-Perot
interferometer

Partially silvered

qlass plates When focused by alens,

the interference fringes

form concentric circles,

rabry” higher arders toward center
Perot o
etalon | =—1———=ma | BT n

Condition for maximum
2dcosoa = ma

Multiple reflected
| ncident lesl rays are out of phase

light d by a constant increment,
increasing the sharpness of the interference maximum.
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Measurement of Spectra

We can measure spectra directly in some cases

m tides, "The Harmonic Analyzer" Kelvin,
analogues computation of coefficients of

A-+Bsint +-Ccogd+Dsin2+Ecos2

The tidal gauge, tidal harmonic analyzer, and tide predictor, in Kelvin,
Mathematical and Physical Papers (Volume VI), Cambridge 1911, pp 272-305.

http://ww. mat h. sunysb. edu/ ~tony/ti des/anal ysi s. ht m
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http://www.math.sunysb.edu/~tony/tides/analysis.html

Measurement of Spectra

m The tidal gauge illustrates a point

m analogue devices
m are hard to build
m have limited resolution
m are inflexible
m digital devices are often better
m cheaper
= more flexible
m we need to consider transforms of digital data
m that's exactly what we'll do in the next lecture
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