Section 1

Revision
The hardest part of optimisation is often translating a messy real-world problem into mathematics

- Break it down
 - What are my variables?
 - what can I control?
 - what are the decisions I make?
 - What is my objective?
 - express what you want to achieve in terms of a function of the variables
 - What are my constraints?
 - what are the limits on the variables?
Problem Classification

- First job is often to work out what type of problem you are solving

- Integer or Continuous
 - sometimes becomes integer when we introduce extra artificial variables

- Other classifications we haven’t covered in this course in detail
Translation

We have been dealing with LPs and ILPs

- Variables are numbers
 - we put them in a vector \(\mathbf{x} \)
- The objective is a linear function of the variables
 - we can always write it as max or min of
 \[
 z = \sum_i c_i x_i
 \]
 where the \(x_i \) are the variables, and \(c_i \) are some numbers
- The constraints are linear inequalities or equalities of the variables
 - can always be written into standard form \(A\mathbf{x} = \mathbf{b} \)
 - don’t forget non-negativity
Approximation

- All real problems have a tradeoff between
 - realism
 - simplicity

We need to balance these

- We are doing linear programming
 - sometimes the problem will be non-linear
 - often easier to approximate, than to try non-linear methods

- You need to learn “tricks”
 - linear segment approximation
 - what parts of a curve “matter”
 - introducing extra variables
Solution Methods

- Simplex (for LPs)
 - plus duality and complementary slackness
 - sensitivity analysis

- Heuristics (for ILPs)
 - greedy
 - GAs

- Branch and Bound (for ILPs)
Complexity

- An important part of using any algorithm is understanding its computational complexity
 - how long it will take to run
- Often we describe this with big-O notation
 - know how to derive
 - know the limitations
Coding

You need to be able to program to be able to deal with real problems

- Matlab
 - very good general purpose tool
 - shouldn’t be the only language you know!

- AMPL (with lpsolve)
 - specific to optimisation
 - much more powerful than I have shown

- There are many others, but the above are the ones we have used
Exam notes

- You are allowed to take in some notes
 - 2 pages
 - double-sided
 - hand-written

- Standard restriction on calculators
 - Calculators without remote communications facilities are permitted.

- English and foreign-language dictionaries may be used
Further reading