Complex-Network Modelling and Inference
 Lecture 24: Network Tomography

Matthew Roughan
matthew.roughan@adelaide.edu.au
https://roughan.info/notes/Network_Modelling/

School of Mathematical Sciences, University of Adelaide

March 7, 2024

Section 1

Network Inference Problems

Indirect Measurements

- Often we can't measure a network directly
- don't have privileged access, e.g., to routers
- "actors" won't reliably report connections, e.g., criminals
- Often we observe some proxy measurements of the network
- instead of observing social relationships, we observe emails
- Sometimes, the proxy measurements don't even have the data we want, i.e., edges

Measuring Network Performance

- We often want to know how well our (Internet) network is working
- Internet stores packets in queues
- hence delays
- if queues over-flow, packets are dropped
- Performance metrics
- packet delay
- packet loss rate
- packet jitter
- packet reordering
- throughput
- Network devices
- are fairly "dumb", i.e., they don't see or record their own performance, so how can we find this stuff out?
- deliberately won't report dropped packets, e.g., when they are deliberately censoring traffic

Active probes

- Active performance measurements
- Send probe packets from $A \rightarrow B$ across the network
- Measure, e.g., the delays experienced by packets

Variations

There are lots of variations on this

- Round-trip v one-way
- What type of packet
- Passive variants

But the key idea is that we measure a performance metric along a whole path.

We could construct similar experiments in other transport networks

- delays of packages in the mail
- time for trucks to get to destinations

Question

Could we use these types of measurements somehow to reconstruct the network?
i.e., just using delays or lost packets from $A \rightarrow B$ etc, can we work out the network?

Inverse problems

- mostly in math classes we teach a technique, and then ask you to solve a problem using that technique
- In reality, problem solving involves determining which of the infinite set of available techniques, suits the problem
- This is the essence of inverse problems

Inverse problems

Characteristics

- forward problem:
- logic is sequential: A therefore C
- task is to use the model A to predict behaviour C
- inverse problem:
- logic is reversed: C could result from A or B or something else?
- very large class of possibilities
- task is to determine which of A or B caused C
- modelling, in general, is an inverse problem
- we'll add some specifics here to make the problems soluble

Example

- forward problem:
- do the two sets of numbers A and B have the same sum, i.e., is

$$
\sum_{x \in A} x=\sum_{y \in B} y
$$

- inverse problem:
- given set of numbers C, can we divide it into two sets A and B that have the same sum
- $\{1,4,5,6,9,11,14\}$

Example 2: Who put the CAT in CATscan?

- people don't like you cutting their head open!
- so indirect methods are used to peer inside
- Computer Axial Tomography (CAT)
- Tomo- from the Greek tomos meaning "section"

Tomographic techniques are used in many areas:

- Ocean Acoustic Tomography http://www.oal.whoi.edu/tomo2.html
- Archaeology http://archaeology.huji.ac.il/ct/
- Medical Imaging http://www.triumf.ca/welcome/petscan.html
- Manufacturing http://www.tomography.umist.ac.uk/intro.shtml
- Seismology http://www.itso.ru/GEOTOMO/paper_moscow2003/index.html
There are many solution techniques.

Network Tomography

The CATscan example is a lot like our network measurements

- Indirect measurements
- We want to understand structure inside

Idea spawned a large area of research called "Network Tomography" [Var96, kcMM99, CHNY02]

Network Tomography

There are many variants, but we will think about only two.
(1) Tree-based, (almost) deterministic tomography
(2) Stochastic tomography on general networks Only if we have some spare time after the break.

Section 2

Tree-based, deterministic tomography

Tree-based

- Many networks are trees
- Even when the network itself is not a tree, remember that shortest-path routing forms trees (from a single source to all destinations, or visa versa)
- Assume some links or nodes are "blockages," and we want to find these
- Assume we have a multicast mechanism
- a way to send a message from the root of the tree to all the leaves
- ideally, all messages are simultaneous so we have an atomic measurement
- we could approximate multicast in various ways (sending lots of smaller messages together) if we don't actually have such a mechanism
- Assume we can record who receives the message

Multicast

Multicast

Tree-based

- Starting point: given a tree, can we work out where blockages are?
- Find an "explanation" for observations?
\star if the mechanism is correct, then there should be such an explanation, but can we find it without enumerating all possibilities?
\star is that still true if there is noise in the measurements?
- Is there a unique explanation?
* look at the figure carefully
- Then: can we choose between trees?

SAT

Definition (SAT)

A (Boolean) satisfiability (SAT) problem has n Boolean variables x_{1}, \ldots, x_{n} and a Boolean formula ϕ involving the variables. The question is whether there is an assignment (of TRUE and FALSE) to the variables, such that $\phi\left(x_{1}, \ldots, x_{n}\right)=T R U E$, i.e., we satisfy the formula.

Example 1:

One variable x_{1} and Boolean formula

$$
\phi(\mathrm{x})=x 1 \wedge \neg x 1
$$

where $\wedge=$ AND and $\neg=$ NOT, is not satisfiable because

$$
\begin{aligned}
\text { TRUE AND NOT TRUE } & =F A L S E \\
\text { FALSE AND NOT FALSE } & =F A L S E
\end{aligned}
$$

so there is no value of x_{1} that leads to $\phi\left(x_{1}\right)=T R U E$.

SAT

Example 2:

Three variables x_{1}, x_{2} and x_{3} and Boolean formula

$$
\phi(\mathrm{x})=(x 1 \vee \neg x 2) \wedge(\neg x 1 \vee x 2 \vee x 3) \wedge \neg x 1
$$

where

$$
\begin{aligned}
\vee & =\mathrm{OR} \\
\wedge & =\mathrm{AND} \\
\neg & =\mathrm{NOT}
\end{aligned}
$$

is satisfied by $x 1=F A L S E, x 2=F A L S E$, and $x 3$ arbitrarily.

Recast multicast problem as SAT

There are approaches to try to solve the multicast-tree problem directly, but it is more appealing to convert it into a SAT problem because

- it is a more general framework, i.e., we could include other constraints into the problem
- it is a hugely studied problem, and there are very good SAT-solvers out there in free-software land http://www.maxsat.udl.cat/16/results/index.html

Recast multicast problem as SAT

- Each edge forms a variable $x_{i j}$

$$
x_{i j}= \begin{cases}T R U E, & \text { if } e_{i j} \text { is good, } \\ F A L S E, & \text { if } e_{i j} \text { is bad }\end{cases}
$$

- Each path to a successful delivery defines an expression

$$
A N D_{e \in P} x_{e}
$$

- Each path to a failed delivery defines an expression

$$
\neg A N D_{e \in P} x_{e}
$$

- The overall expression is an AND over all of these

SAT

- SAT is a decision problem
- it just asks us to find at least one solution
- it's still NP-complete (the first known such)
- We need a little more than just a decision
- \#SAT or Sharp-SAT is the problem of counting all of the solutions
- there are other variants

Non-uniqueness

Non-uniqueness

Non-uniqueness

Non-uniqueness

What can we do?

- Ockham's Razor

Ockham's razor

Pluralitas non est ponenda sine neccesitate
William of Ockham (ca. 1285-1349)

- "Plurality should not be posited without necessity."
- alternative versions
- "Entia non sunt multiplicanda praeter necessitatem", or "Entities should not be multiplied beyond necessity"
- "in vain we do by many which can be done by means of fewer"
- "if two things are sufficient for the purpose of truth, it is superfluous to suppose another"
- Principle of Parsimony

Quidquid latine dictum sit, altum viditur.

Non-uniqueness

What can we do?

- Ockham's Razor
- Use "churn"

Uniqueness via Churn + and Application

Application: locating censorship on the WWW [CNRG17]

- Internet is a key mode of free speech, and open dissemination of information, but not all governments agree with those ideas, and not all corporations want to provide open access
- We know some Internet content is censored
- often it is done by "breaking" the network
- Can we detect where censorship is happening?

Censorship model

- Nodes are "autonomous systems"
- think of them as a network operator like Telstra
- nodes are where the censorship happens (not edges)
- Edges are the connections between ASs
- note that there can be many physical edges, but they are represented by one logical edge
- Measurements: observe from a "vantage point" outwards (effectively creating a tree)
- Assumptions
- not all traffic is censored
- so we can see the routes

Churn

Internet routing "churns", i.e., it changes regularly

- normally this is a problem
- here it is an advantage

Simply, as routes change, the measurements will change, and we get more constraints. More constraints means we are more likely to get a unique solution.

Churn

Case 1 (the real case)

Churn

Case 2 (alternative hypothesis)

Churn

Routing change

Churn

[CNRG17] showed that in the censorship problem churn could reduces uncertainty in the number of censoring ASs by 95%

Tree-inference

- The above assumed we knew the routing/tree
- What can we do if we don't? Can we infer the tree?
- Not from a single experiment, but if we can conduct many we might have some hope
- look into approaches next

Further reading I

©
M. Coates, A. Hero, R. Nowak, and B. Yu, Internet tomography, IEEE Signal Processing Magazine (2002).
樯
Shinyoung Cho, Rishab Nithyanand, Abbas Razaghpanah, and Phillipa Gill, A churn for the better: Localizing censorship using network-level path churn and network tomography, CoNext, December 2017.

园
k.c. claffy, T.E. Monk, and D. McRobb, Internet tomography, Nature: web matters (1999), http://www.nature.com/nature/webmatters/tomog/tomog.html? foxtrotcallback=true.
R
Y. Vardi, Network tomography: estimating source-destination traffic intensities from link data, J. Am. Statist. Assoc. 91 (1996), no. 433, 365-377.

