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Section 1

Network Sampling



Why sample

@ Some graphs are very big!
> measurements cost (money, time, resources, ...)
» maybe too big to analyse

@ Some measurement approaches can't help it

» missing data is common
» missing data creates a kind of sampling

@ Visualisation
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Sampling goals

The goal of sampling is to obtain a reasonably accurate measure of the
particular statistics of the overall population.

@ Your definition of “reasonable” may vary

@ The statistics you are interested in will vary
> statistics of the nodes, or edges, or triangles, ...
* remember, they represent people, or relationships, ...
» network metrics (we spent 3 lectures on these)
» model parameters (we spent even more time on models)
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Notes

@ We could be
» sampling some graphs from a larger set
» sampling some part of a single graph
@ Properties of interest
> unbiased: expected value of estimator is the same as the statistic,
eg, E[s]=0
» asymptotically unbiased: the above is true as the number of samples
increases (convergence in expectation)
> consistent: estimates converge in probability
» efficient: MSE of estimate is as small as possible for the number of
samples

@ Assume uniquely labelled nodes

> so we can tell if we hit the same node twice

» sometimes say a node is “burned” if already sampled

» can have a method that “re-samples” nodes deliberately (not my most
favoured idea though)
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Problems

@ Bias in general
» if we preferentially sample some subgroup we can easily introduce bias
into our statistics estimate
> ideally, we would have random samples to avoid this
@ Structural bias
> in our problems, the population members are not independent, they
have relationships
» so we don't just need random sample of the population, we also need
(somehow) to see a random view of their relationships
@ Some properties are properties of the whole graph
» Hamiltonian and Eulerian cycles
» k-connectivity
@ We presume that we must sample without knowledge of the
underlying graph
» if you know the graph, why sample?
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Sampling strategies

Somewhat mirror measurement strategies

Node sampling
Edge sampling

°
@ Random-walk sampling
@ Snowball sampling

°

Path-based sampling

Matthew Roughan (School of Mathematical ¢ March 7, 2024 8/31



Node sampling

Graph G(N, E)
@ Randomly choose a subset of nodes N’ C N
» e.g., randomly generate a Facebook ID, and see if it is real

@ Choose E' C E, such that all edges between nodes in N’ are in E’
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Node Sampling Example
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Node Sampling Example
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Node Sampling Pros and Cons

@ Pros:
> simple
» unbiased sample of nodes
* sampled GER random graph will be a GER random graph
o Cons:
» sparsifies the network

* Q: is the node degree you measure the degree in the subgraph, or the
degree of the sampled nodes in the original graph?

> breaks the structure, e.g.,

* clustering coefficient will be smaller
* breaks up connected components
* distances will be longer

> not easy to get an unbiased sample of nodes in many situations
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Edge Sampling

Graph G(N, E)
@ Randomly choose a subset of edges E' C E
@ Choose N C N, such that all end-points of edges in E’ are in N
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Edge Sampling Example
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Edge Sampling Example
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Edge Sampling Pros and Cons

@ Pros:

> simple

» unbiased sample of edges

> properties such as assortativity preserved
o Cons:

> biased sample of nodes, e.g.,

* preferentially samples nodes with high degree
* don't see nodes with zero degree

» also breaks structure of network
> not all networks can be measured/sampled this way
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Weighting

@ With either of the above we could weight the sample
» sample as before
> accept/reject with probability dependent on node/edge features
» e.g., sampling with weight depending on centrality of node
» not obvious how to do it without introducing biases, without knowing
something about the network a priori
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Random-walk sampling (with escaping)

@ Pick a random start
@ Perform a random walk from each seed

> probability d keep going

» probability 1 — d pick a new random start point
@ Stop when “enough” nodes are sampled

Alternative is Frontier Sampling [RT10] — start from a set of random
seeds, and process the RWs in parallel
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Random-walk sampling Pros and Cons

@ Pros:

» uniform distribution on edges
» preserves clustering (better than other approaches), and some other
properties

e Cons:
> biased towards higher degree nodes
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Snowball Sampling [Col58]

@ Sample some seed nodes

@ Include their neighbours, and their neighbour’s neighbours out to
some number of hops

» might be a sub-sample of neighbours
» might be a fixed number of neighbours
> links might be suggested by survey respondent

Variants are called “chain-referral” or “network” or “forest-fire” sampling.
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Snowball Sampling Example
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Snowball Sampling Example
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Snowball Sampling Pros and Cons

@ Pros:
» often driven by practicalities of measurements
* it can be hard to “find" a set of original nodes to sample
> preserves local structure

o Cons:

\4

inefficient if sampling rate is high (get overlaps)
biased selection of nodes (and edges)

only preserves local structure

can make network look MORE clustered

v vyy
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Path-based Sampling

e Start from a (hopefully) random seed
@ Follow the shortest path tree away from the node
» follow the used pathways
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Path-based Sampling Example
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Path-based Sampling Example
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Path-based Sampling Pros and Cons

@ Pros:

» often driven by practicalities of measurements
> preserves distances

e Cons:

» inefficient if sampling rate is high (get overlaps)
> introduces unexpected biases, e.g., degree distribution, that can be
extreme [LBCX03, ACKMO09]
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The degree of distortion depends on the model

e GER random graph

>
>

10,000 nodes
k=28

@ generate and sample 100 instances

@ sampling rates

>

>
>
>
>

node: 1/10 nodes

edge: 1/10 edges

snowball: 2 seeds, 3 hops

random walk: d = 0.15, 1/10 nodes
path: 1 seed, all (connected) destinations
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Degree distributions
Degree of nodes in the sampled subgraph
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Degree distributions (2)

Degree of sampled nodes in the original graph
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Clustering

sample method | global clustering
node 0.0042

edge 0.0003

snowball 0.0118
random walk 0.0265
path 0.0000
unsampled 0.0038
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Yet More Sampling Strategies

@ Path-, Random-Walk and Snowball are all traversal sampling
strategies, there are others

» Metropolis-Hastings Random Walk
e 777
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A Few More Bits

@ There is no perfect solution here — all methods introduce some type
of bias, or break something

@ Given a model, and a sampling strategy, we can sometimes reverse
sampling biases
» derive distributions analytically
> invert
» but not guaranteed to be possible as there is some information loss

@ Haven't really considered difference for directed graphs
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Further reading Il
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