Section 1

Network Inference Problems
Indirect Measurements

- Common that we can’t measure a network directly
 - don’t have privileged access, *e.g.*, to routers
 - “actors” won’t reliably report connections, *e.g.*, criminals
- Often we observe some proxy measurements of the network
 - instead of observing social relationships, we observe emails
- Sometimes, the proxy measurements don’t even have the data we want, *i.e.*, edges
Measuring Network Performance

- We often want to know how well our (Internet) network is working
 - Internet stores packets in queues
 - hence delays
 - if queues over-flow, packets are dropped

- Performance metrics
 - packet delay
 - packet loss rate
 - packet jitter
 - packet reordering
 - throughput

- Most network devices are fairly “dumb”, i.e., they don’t see or record their own performance, so how can we find this stuff out?
Active probes

- Active performance measurements
- Send probe packets from $A \rightarrow B$ across the network
- Measure, e.g., the delays experienced by packets
Variations

There are lots of variations on this

- Round-trip v one-way
- What type of packet
- Passive variants
- ...

But the *key* idea is that we measure a performance metric along a whole path.

We could construct similar experiments in other *transport* networks

- delays of packages in the mail
- time for trucks to get to destinations
Could we use these types of measurements somehow to reconstruct the network?

i.e., just using delays or lost packets from $A \rightarrow B$ etc, can we work out the network?
Inverse problems

- mostly in math classes we teach a technique, and then ask you to solve a problem using that technique
- In reality, problem solving involves determining which of the infinite set of available techniques, suits the problem
- This is the essence of inverse problems
Inverse problems

Characteristics

- **forward problem:**
 - logic is sequential: A therefore C
 - task is to use the model A to predict behaviour C

- **inverse problem:**
 - logic is reversed: C could result from A or B or something else?
 - very large class of possibilities
 - task is to determine which of A or B caused C

- modelling, in general, is an inverse problem

- we’ll add some specifics here to make the problems soluble
Example

- **forward problem:**
 - do the two sets of numbers A and B have the same sum, *i.e.*, is
 \[
 \sum_{x \in A} x = \sum_{y \in B} y
 \]

- **inverse problem:**
 - given set of numbers C, can we divide it into two sets A and B that have the same sum
 - \{1, 4, 5, 6, 9, 11, 14\}
Example 2: Who put the CAT in CATscan?

- people don’t like you cutting their head open!
- so indirect methods are used to peer inside
- Computer Axial *Tomography* (CAT)
 - Tomo- from the Greek *tomos* meaning “section”
Tomographic techniques are used in many areas:

- **Ocean Acoustic Tomography**

 http://www.oal.whoi.edu/tomo2.html

- **Archaeology** http://archaeology.huji.ac.il/ct/

- **Medical Imaging** http://www.triumf.ca/welcome/petscan.html

- **Manufacturing**

 http://www.tomography.umist.ac.uk/intro.shtml

- **Seismology**

There are many solution techniques.
Network Tomography

The CATscan example is a lot like our network measurements

- Indirect measurements
- We want to understand structure inside

Idea spawned a large area of research called “Network Tomography”
[Var96, kcMM99, CHNY02]
Network Tomography

There are many variants, but we will think about only two.

1. Tree-based, (almost) deterministic tomography
2. Stochastic tomography on general networks
Section 2

Tree-based, deterministic tomography
Many networks are trees

Even when the network itself is not a tree, remember that shortest-path routing forms trees (from a single source to all destinations, or visa versa)

Assume some links or nodes are “blockages,” and we want to find these

Assume we have a **multicast** mechanism
 - a way to send a message from the root of the tree to all the leaves
 - ideally, all messages are simultaneous so we have an atomic measurement
 - we could approximate multicast in various ways (sending lots of smaller messages together) if we don’t actually have such a mechanism

Assume we can record who receives the message
Multicast

```
1
  2
  4 3
  7 8 5
  4
  11 12
  10
  9

root
leaves
```

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)
Multicast

To: Everyone on the long list of people to send this to

leaves

root

1
2 3
4
7 8
5 4 6
11 12
10 9

To: Everyone on the long list of people to send this to
To: Everyone on the long list of people to send this to
To: Everyone on the long list of people to send this to
To: Everyone on the long list of people to send this to
To: Everyone on the long list of people to send this to
To: Everyone on the long list of people to send this to
To: Everyone on the long list of people to send this to
To: Everyone on the long list of people to send this to
Starting point: given a tree, can we work out where blockages are?

- Find an “explanation” for observations?
 - if the mechanism is correct, then there should be such an explanation, but can we find it without enumerating all possibilities?
 - is that still true if there is noise in the measurements?
- Is there a unique explanation?
 - look at the figure carefully

Then: can we choose between trees?
A (Boolean) \textit{satisfiability} (SAT) problem has \(n\) Boolean variables \(x_1, \ldots, x_n\) and a Boolean formula \(\phi\) involving the variables. The question is whether there is an assignment (of TRUE and FALSE) to the variables, such that \(\phi(x_1, \ldots, x_n) = \text{TRUE}\), \textit{i.e.}, we satisfy the formula.

\textbf{Example 1:}
One variable \(x_1\) and Boolean formula

\[\phi(x) = x_1 \land \neg x_1 \]

where \(\land = \text{AND}\) and \(\neg = \text{NOT}\), is \textit{not satisfiable} because

\[
\begin{align*}
\text{TRUE AND NOT TRUE} & = \text{FALSE} \\
\text{FALSE AND NOT FALSE} & = \text{FALSE}
\end{align*}
\]

so there is no value of \(x_1\) that leads to \(\phi(x_1) = \text{TRUE}\)
Example 2:
Three variables x_1, x_2 and x_3 and Boolean formula

$$\phi(x) = (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land \neg x_1$$

where

$$\lor = \text{OR}$$

$$\land = \text{AND}$$

$$\neg = \text{NOT}$$

is satisfied by $x_1 = \text{FALSE}$, $x_2 = \text{FALSE}$, and x_3 arbitrarily.
Recast multicast problem as SAT

There are approaches to try to solve the multicast-tree problem directly, but it is more appealing to convert it into a SAT problem because

- it is a more general framework, i.e., we could include other constraints into the problem
- it is a hugely studied problem, and there are very good SAT-solvers out there in free-software land

http://www.maxsat.udl.cat/16/results/index.html
Recast multicast problem as SAT

- Each edge forms a variable x_{ij}

 \[x_{ij} = \begin{cases}
 \text{TRUE}, & \text{if } e_{ij} \text{ is good}, \\
 \text{FALSE}, & \text{if } e_{ij} \text{ is bad},
 \end{cases} \]

- Each path to a successful delivery defines an expression

 \[\text{AND}_{e \in P} x_e \]

- Each path to a failed delivery defines an expression

 \[\neg\text{AND}_{e \in P} x_e \]

- The overall expression is an AND over all of these
SAT is a *decision* problem

- it just asks us to find at least one solution
- it’s still NP-complete (the first known such)

We need a little more than just a decision

- #SAT or Sharp-SAT is the problem of counting all of the solutions
- there are other variants
Non-uniqueness
Non-uniqueness

To: Everyone on the long list of people to send this to

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)
Non-uniqueness
Non-uniqueness

What can we do?

- Ockham’s Razor
Ockham’s razor

Pluralitas non est ponenda sine neccesitate

William of Ockham (ca. 1285-1349)

- "Plurality should not be posited without necessity."
- alternative versions
 - “Entia non sunt multiplicanda praeter necessitatem”, or “Entities should not be multiplied beyond necessity”
 - “in vain we do by many which can be done by means of fewer”
 - “if two things are sufficient for the purpose of truth, it is superfluous to suppose another”
 - Principle of Parsimony
Quidquid latine dictum sit, altum viditur.
Non-uniqueness

What can we do?

- Ockham’s Razor
- Use “churn”
Uniqueness via Churn + and Application

Application: locating censorship on the WWW [CNRG17]

- Internet is a key mode of free speech, and open dissemination of information, but not all governments agree with those ideas, and not all corporations want to provide open access
- We know some Internet content is censored
 - often it is done by “breaking” the network
- Can we detect where censorship is happening?
Censorship model

- nodes are “autonomous systems”
 - think of them as a network operator like Telstra
 - nodes are where the censorship happens (not edges)
- edges are the connections between ASs
 - note that there can be many physical edges, but they are represented by one logical edge
- measurements: from a “vantage point” measure outwards (effectively creating a tree)
- assumptions
 - not all traffic is censored
 - so we can see the routes
Churn

Internet routing “churns”, i.e., it changes regularly
- normally this is a problem
- here it is an advantage

Simply, as routes change, the measurements will change, and we get more constraints. More constraints means we are more likely to get a unique solution.
Churn

To: Everyone on the long list of people to send this to

1
2
3
4
7
8
5
4
6
11
12
10
9

root

leaves

7
8
9
10
11
12
Churn

To: Everyone on the long list of people to send this to

leaves

root
[CNRG17] showed that in the censorship problem churn could reduce uncertainty in the number of censoring ASs by 95%
The above assumed we knew the routing/tree
What can we do if we don’t? Can we infer the tree?
Not from a single experiment, but if we can conduct many we might have some hope
 ▶ look into approaches next
Further reading

