Complex-Network Modelling and Inference

Lecture 20: Path algebras

Matthew Roughan
matthew.roughan@adelaide.edu.au
https://roughan.info/notes/Network_Modelling/

School of Mathematical Sciences, University of Adelaide

March 7, 2024

Section 1

Matrix version of shortest paths

Matrix Version

We can rewrite shortest paths as the solution in the form find A^{*} where $A_{i j}^{*}$ is the shortest-path distance between i and j and then

$$
A_{i j}^{*}=\min _{p \in P_{i j}} w(p)=\min _{p \in P_{i j}} \sum_{e \in p} w_{e},
$$

where

- $P_{i j}$ is the set of paths from i to j
- $w(p)$ is the total length of path p
- w_{e} is the length (or weight) of edge e

Min-plus intro

- Define new operations

$$
\begin{aligned}
& a \oplus b=\min (a, b) \\
& a \otimes b=a+b
\end{aligned}
$$

- Redefine matrix multiplication $C=A \otimes B$

$$
\begin{array}{c|c}
\text { Normal } C=A B & \text { New version } C=A \otimes B \\
\hline C_{i j}=\sum_{k} A_{i k} \times B_{k j} & C_{i j}=\bigoplus_{k} A_{i k} \otimes B_{k j}
\end{array}
$$

- The new version means

$$
C_{i j}=\min _{k}\left(A_{i k}+B_{k j}\right)
$$

- We can redefine matrix powers

$$
A^{k}=A \otimes A \otimes \cdots \otimes A=A \otimes A^{k-1}
$$

Generalising the weighted adjacency matrix

- A is a weighted adjacency matrix

$$
A_{i j}= \begin{cases}w_{i j}, & \text { if }(i, j) \in E \\ \infty & \text { otherwise }\end{cases}
$$

Notice ∞ instead of 0 in off-diagonal non-adjacencies

- Now A^{2} using the new operators is not the number of two-hop paths, it is

$$
A^{2}=\bigoplus_{k} A_{i k} \otimes A_{k j}=\min _{k}\left(A_{i k}+A_{k j}\right)
$$

which is the length of the shortest 2-hop path (where we allow self-loops of zero length)

The meaning of matrix powers

- With the new operators we define A^{k}, whose elements give the shortest k-hop distances
- We have a special identity matrix I for the new operators
- definition

$$
A \otimes I=I \otimes A=A
$$

- matrix which satisfies this is

$$
I=\left(\begin{array}{rrrr}
0 & \infty & \infty & \ldots \\
\infty & 0 & \infty & \ldots \\
\infty & \infty & 0 & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right)
$$

- for consistency we want $A^{0}=I$, which means the length of 0 -hop paths, so the definition above makes sense

Matrix Version

- The shortest path distances are then

$$
A^{*}=\min \left(I, A, A^{2}, A^{3}, \ldots\right)
$$

where I is a special identity matrix for our new operators

- We can write this as

$$
A^{*}=I \oplus A \oplus A^{2} \oplus \cdots=\bigoplus_{k=0}^{\infty} A^{k}
$$

- But does this sum converge?
- How would we find it without all this work?

Matrix Version

- In normal matrix algebra

$$
\begin{aligned}
I+A A^{*} & =I+A\left(I+A+A^{2}+\cdots\right) \\
& =I+A+A^{2}+A^{3} \cdots \\
& =A^{*}
\end{aligned}
$$

- For new operators: \oplus commutes and \otimes distributes over \oplus

$$
A^{*}=\left(A \otimes A^{*}\right) \oplus I
$$

So another way to think about finding A^{*} is to look for a solution to this equation.

- When does one exist?
- Is it unique?

Bellman-Ford algorithm

- We want to solve

$$
A^{*}=\left(A \otimes A^{*}\right) \oplus I
$$

- One approach is successive iteration

$$
A^{<k+1>}=\left(A \otimes A^{<k>}\right) \oplus I
$$

Hopefully it converges to a fixed-point, i.e., the solution

- Writing this out in full, for $i \neq j$

$$
A_{i j}^{<k+1>}=\min _{m}\left(A_{i m}^{<k>}+A_{m j}^{<k>}\right)
$$

This isn't Floyd-Warshall, but you can see the similarities, e.g., FW recursion is

$$
D_{i j}^{(k)}=\min \left\{D_{i j}^{(k-1)}, D_{i k}^{(k-1)}+D_{k j}^{(k-1)}\right\}
$$

- Idea is the same: shortest-paths are built from shortest paths, but the new approach is called Bellman-Ford

Bellman-Ford algorithm

- The above is not the usual definition of Bellman-Ford
- usually described in terms of dynamic programming
- Implementation in the Internet is distributed and asynchronous and still works!
- there are a couple of tweaks needed
- but its a robust, scalable approach
- The description above is nice because it generalises

Section 2

General path problems

General path problems

There are many path problems other than shortest-paths

- connectivity: find if a path exists
- widest paths: find the path with the widest "bottleneck" link
- path reliability: find the most reliable path
- path security: find the properties of the set of all possible paths We can tackle all of these (and more) by generalising the previous matrix algebra operations \oplus and \otimes, but we have to do so to preserve important properties - you saw that, for instance we needed:
- commutativity of \oplus
- distributivity
- identity
what else?

Semirings [GM08]

- A semiring ${ }^{1}$ is a set S closed under 2 binary operators such that
- (S, \oplus) is a commutative monoid ${ }^{2}$ with identity $\overline{0}$
- \oplus is associative $(a \oplus b) \oplus c=a \oplus(b \oplus c)$
- \oplus commutes: $a \oplus b=b \oplus a$
- \oplus has identity $\overline{0}: ~ a \oplus \overline{0}=\overline{0} \oplus a=a$
- (S, \otimes) is a monoid with identity $\overline{1}$
- \otimes is associative: $(a \otimes b) \otimes c=a \otimes(b \otimes c)$
- \otimes has identity $\overline{1}: ~ a \otimes \overline{1}=\overline{1} \otimes a=a$
- Multiplication distributes over addition (left and right)
- $a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)$
- $(b \oplus c) \otimes a=(b \otimes a) \oplus(c \otimes a)$
- Multiplication by $\overline{0}$ annihilates
- $\overline{0} \otimes a=a \otimes \overline{0}=\overline{0}$
${ }^{1}$ Some definitions vary
${ }^{2} \mathrm{~A}$ monoid is a semigroup with an identity

Example Semirings $(S, \oplus, \otimes, \overline{0}, \overline{1})$

Name	S	\oplus	\otimes	$\overline{0}$	$\overline{1}$	Graph problem
Real Field	\mathbb{R}	+	\times	0	1	
Boolean	$\{F, T\}$	OR	AND	F	T	Reachability
$($ Min-+) Tropical	$\mathbb{Z}^{+} \cup \infty$	\min	+	∞	0	Shortest paths
Viterbi	$[0,1]$	\max	\times	0	1	Most probable path
Bottleneck	$\mathbb{R} \cup \pm \infty$	\max	\min	$-\infty$	∞	Bottleneck paths

- S is the set we work on
- \oplus and \otimes replace + and \times
- $\overline{0}$ is the identity for \oplus
- $\overline{1}$ is the identity for \otimes

Less obvious examples

S	\oplus	\otimes	$\overline{0}$	$\overline{1}$	Graph problem
$\mathbb{R} \cup-\infty$	\max	+	$-\infty$	0	Longest paths
$\mathcal{P}\{\Omega\}$	\cup	\cap	ϕ	Ω	Path properties
$\mathcal{P}\left\{\Omega^{*}\right\}$	\cup	concat	ϕ	λ	List all paths

- Ω is an arbitrary set of "symbols"
- $\mathcal{P}\{\Omega\}$ is the powerset, i.e., the set of all subsets of Ω
- Ω^{*} is the set of all finite sequences of symbols from Ω
- λ is the empty sequence

Other operator properties

Given a set and operator (S, \bullet) there are other interesting properties selective means

$$
\forall a, b \in S, \quad a \bullet b \in\{a, b\}
$$

- i.e., the operator "selects" one of the inputs
- e.g., MIN, MAX
- e.g., \vee and \wedge
- e.g., LEFT where we define

$$
a \text { left } b=a
$$

idempotent means

$$
\forall a \in S, \quad a \bullet a=a
$$

- i.e., the operator applied to the input twice does nothing
- Note selectivity implies idempotence

Hence, e.g., MIN, MAX, LEFT are idempotent

- e.g., \cup and \cap

Min-plus Semiring

The Min-plus (or Tropical) semiring defined above has

$$
(S, \oplus, \otimes, \overline{0}, \overline{1})=(\mathbb{R}, \min ,+, \infty, 0)
$$

Note that

- The zero element $\overline{0}=\infty$, because

$$
\min (\infty, a)=\min (a, \infty)=a, \quad \forall a \in \mathbb{R}
$$

so ∞ is the "additive" identity

- The multiplicative identity $\overline{1}=0$, because

$$
0+a=a+0=a \quad \forall a \in \mathbb{R}
$$

- So the ordering in this semiring is the opposite to what you are used, i.e.,
- ∞ is small, or "bad"
- 0 is big, or "good"

How to use the semiring

- Remember that the min-plus operators formed the basis for shortest-paths
- Other semirings form the basis for other path algebras
- we need to choose the right semiring
- extend it to its matrix version

Min-plus Semiring, Mark II

- Find the shortest-hop path, but only as long as it has length less than 6 hops, otherwise, treat it as invalid
- Semiring is

$$
(S, \oplus, \otimes, \overline{0}, \overline{1})=(\{0,1,2,3,4,5, \infty\}, \min , "+", \infty, 0)
$$

where

$$
a \otimes b=a^{\prime \prime}+\prime b= \begin{cases}a+b & \text { if } a+b<5 \\ \infty & \text { if } a+b \geq 6\end{cases}
$$

Matrices over a Semiring form a Semiring [RSNK14]

Take $M_{n}(S)$ to be the set of square $n \times n$ matrices, with elements from a semiring $(S, \oplus, \otimes, \overline{0}, \overline{1})$, then we get a new semiring

$$
\left(M_{n}(S), \hat{\oplus}, \hat{\otimes}, 0, I\right)
$$

- $A \hat{\oplus} B$ is element-wise addition

$$
[A \hat{\oplus} B]_{i j}=a_{i j} \oplus b_{i j}
$$

- $A \hat{\otimes} B$ is the generalisation of standard matrix multiplication

$$
[A \hat{\otimes} B]_{i j}=\bigoplus_{k=1}^{n} a_{i k} \otimes b_{k j}
$$

- Identities are the same generalisation, e.g.,

$$
0=\left[\begin{array}{ll}
\overline{0} & \overline{0} \\
\overline{0} & \overline{0}
\end{array}\right], \quad \mathrm{I}=\left[\begin{array}{ll}
\overline{1} & \overline{0} \\
\overline{0} & \overline{1}
\end{array}\right]
$$

where $\overline{1}$ and $\overline{0}$ are the identities for S

Generalised Adjacency Matrix

When working on graphs:

- give each edge a weight, which is an element of a S from our semiring $(S, \oplus, \otimes, \overline{0}, \overline{1})$
- describe the graph by a generalised adjacency matrix A where $A_{i j} \in S$ and

$$
A_{i j}= \begin{cases}s_{i j} \in S, & \text { if }(i, j) \in E \\ \overline{0}, & \text { otherwise }\end{cases}
$$

where here $\overline{0}$ is the additive identity of $(S, \oplus, \otimes, \overline{0}, \overline{1})$

- These are matrices over a semiring, and so the generalised adjacency matrices also form a semiring

Graph algorithms generalise [Lee13, HM12]

Now most graph problems can be written using this model

- Our specification from before works

$$
A^{*}=I \oplus A \oplus A^{2} \oplus \cdots
$$

- remember powers in terms of \otimes, e.g., $A^{2}=A \otimes A$
- There are more efficient algorithms
- Floyd-Warshall is $O\left(n^{3}\right)$ for a network with n nodes
- Bellman-Ford
- Dijkstra

Reachability/connectivity [Dol13]

Simplest example on a graph is connectivity

- use the Boolean semiring

$$
(S, \oplus, \otimes, \overline{0}, \overline{1})=(\{T, F\}, \vee, \wedge, F, T)
$$

- $\left[A^{k}\right]_{i j}=T$ means, there is a path of exactly length k from i to j
- longest path is length n for network with n nodes
- $\left[A^{*}\right]_{i j}=T$ means there is a path between i and j

Reachability Example

$$
A=\left(\begin{array}{lll}
F & T & T \\
F & F & F \\
T & F & F
\end{array}\right)
$$

where

$$
A_{i j}= \begin{cases}T, & \text { if }(i, j) \in E \\ F, & \text { if }(i, j) \notin E\end{cases}
$$

Note $A_{i i}=F$

Reachability Example

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
F & T & T \\
F & F & F \\
T & F & F
\end{array}\right) \\
A^{2}=A \hat{\otimes} A=\left(\begin{array}{ccc}
T & F & F \\
F & F & F \\
F & T & T
\end{array}\right)
\end{gathered}
$$

$\left[A^{2}\right]_{i j}= \begin{cases}T, & \text { if a path of length } 2 \text { exists from } i \text { to } j \\ F, & \text { otherwise }\end{cases}$

Reachability Example

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
F & T & T \\
F & F & F \\
T & F & F
\end{array}\right) \\
A^{*}=I \oplus A \oplus A^{2} \oplus A^{3}=\left(\begin{array}{lll}
T & T & T \\
F & T & F \\
T & T & T
\end{array}\right) \\
{\left[A^{*}\right]_{i j}= \begin{cases}T, & \text { if a path exists from } i \text { to } j \\
F, & \text { otherwise }\end{cases} }
\end{gathered}
$$

Intuition of semirings on graphs

Bottleneck Semiring Example

- \otimes extends paths in series
- \oplus combines paths in parallel $3 \otimes 1=\min (3,1)=1$

- result tells us the widest-bottleneck path from $A \rightarrow D$

Further reading I

Stephen Dolan，Fun with semirings：A functional pearl on the abuse of linear algebra，SIGPLAN Not． 48 （2013），no．9，101－110．

目 Michel Gondran and Michel Minoux，Graphs，dioids and semirings：New models and algorithms（operations research／computer science interfaces series），1st ed．， Springer Publishing Company，Incorporated， 2008.

䁪 Peter Höfner and Bernhard Möller，Dijkstra，Floyd and Warshall meet Kleene， Formal Aspects of Computing 24 （2012），no．4－6，459－476， http：／／dx．doi．org／10．1007／s00165－012－0245－4．

Adam J．Lee，Discrete structures for computer science：Lecture 27：Closures of relations，University of Pittsburgh，2013，https：／／people．cs．pitt．edu／ ～adamlee／courses／cs0441／lectures／lecture27－closures．pdf．
国 K．R．Chowdhury，Abeda Sultana，N．K．Mitra，and A．F．M．Khodadad Khan，On matrices over semirings，Annals of Pure and Applied Mathematics 6 （2014），no．1， 1－10，www．researchmathsci．org／apamart／apam－v6n1－1．pdf．

