Complex-Network Modelling and Inference
 Lecture 16: Operations on graphs (unary operators)

Matthew Roughan
matthew.roughan@adelaide.edu.au
https://roughan.info/notes/Network_Modelling/

School of Mathematical Sciences,
University of Adelaide
March 7, 2024

Operations on graphs

Operations of graphs are important for a number of reasons

- We can use them to build new graph models
- We can calculate properties of graphs
- We use them in proofs of graph properties

Think of them of constructing a grammar or an algebra of graphs.

Operators on graphs

- Types of operators
(1) operators that calculate properties of graphs (e.g., metrics)
(2) operators that produce a new graph
(3) operators that work on weighted graphs to calculate new weights
- extra notation: for $G=(N, E)$, we define

$$
\begin{aligned}
N(G) & =N \\
E(G) & =E
\end{aligned}
$$

i.e., $N(G)$ is the nodes of G and $E(G)$ the edges.

- need to start by defining isomorphic graphs

Graph Isomorphism (reminder)

- First need to know when graphs are the "same"
- Labels often don't matter (or aren't known)
- Two graphs G and H are isomorphic if there exists a bijection f between the nodes of G and H

$$
f: N(G) \rightarrow N(H)
$$

such that it preserves adjacency, i.e.,

$$
(u, v) \in E(G) \Leftrightarrow(f(u), f(v)) \in E(H)
$$

- call the bijection (function) f an isomorphism
- We write two graphs are isomorphic as $G \simeq H$

Section 1

Unary operators

Unary Operators

Operations that map G to G^{\prime}

- Complement G^{C}
- Transpose G^{T} of a digraph
- Line graph $L(G)$ of graph G
- Power G^{k}, for $k=1,2, \ldots$
- Subdivision
- Others
- Graph Minor
- Mycielskian

Complement G^{C}

- $N\left(G^{C}\right)=N(G)$ and

$$
e \in E\left(G^{C}\right) \Leftrightarrow e \notin E(G)
$$

- e.g.,

Complement G^{C}

- $N\left(G^{C}\right)=N(G)$ and

$$
e \in E\left(G^{C}\right) \Leftrightarrow e \notin E(G)
$$

- e.g.,

Transpose G^{T}

- Adjacency matrix is transposed
- Reverse directions of links (in digraph)
- Also called converse, or reverse

G

Transpose G^{T}

- Adjacency matrix is transposed
- Reverse directions of links (in digraph)
- Also called converse, or reverse

Line graph $L(G)$

- Sometimes called adjoint, conjugate, edge-to-vertex dual, ...
- Every edge becomes a node
- Node in $L(G)$ a adjacent if the corresponding edges in G share a common end-point.
- Formally:

$$
G=(N, E) \Rightarrow L(G)=\left(E, E^{\prime}\right)
$$

where

$$
((i, j),(k, m)) \in E^{\prime} \Leftrightarrow(i=k) \vee(i=m) \vee(j=k) \vee(j=m)
$$

Example Line Graph

Each node in G creates a little clique in $L(G)$.

Example Line Graph

G

Each node in G creates a little clique in $L(G)$.

Example Line Graph

Each node in G creates a little clique in $L(G)$.

Properties of Line Graph

- If G is connected, then $L(G)$ is connected
- converse is not true
- not all graphs are a line graph
- for a finite connected graph the sequence $G, L(G), L(L(G)), L(L(L(G))), \ldots$ has only 4 cases
- If G is a cycle graph then they are all isomorphic
- If G is a path graph then each subsequent graph is a shorter path until eventually the sequence terminates with an empty graph.
- If G is a star with 4 nodes, then all subsequent graphs are triangles
- The graphs in the sequence increase indefinitely

Line Graph: case 1

Line Graph: case 1

Line Graph: case 1

Line Graph: case 2

The line graph of a ring is an isomorphic ring (a ring with the same number of nodes).

Line Graph: case 2

The line graph of a ring is an isomorphic ring (a ring with the same number of nodes).

Line Graph: case 2

The line graph of a ring is an isomorphic ring (a ring with the same number of nodes).

Line Graph: case 3

Star

The line graph of a 4 node star is a 3 node ring (a triangle). Using case 1

Line Graph: case 3

Star

The line graph of a 4 node star is a 3 node ring (a triangle). Using case 1

Line Graph: case 3

The line graph of a 4 node star is a 3 node ring (a triangle). Using case 1

Line Graph: case 3

The line graph of a 4 node star is a 3 node ring (a triangle). Using case 1

Line Graph: case 4

Line Graph: case 4

G

Line Graph: case 4

Line Graph: case 4

L(L(G))

Line Graph growth

If G has n nodes, and e edges, then $L(G)$ has $n^{\prime}=e$ nodes and e^{\prime} edges where

$$
e^{\prime}=\frac{1}{2} \sum_{i=1}^{n} k_{i}^{2}-e
$$

where k_{i} are the node degrees

Graph Power G^{k}

- G^{k} is the graph formed from the nodes of G, and with edges between all pairs of nodes with (hop) distance no more than k.
- For example:

Graph Power G^{k}

- G^{k} is the graph formed from the nodes of G, and with edges between all pairs of nodes with (hop) distance no more than k.
- For example:

Graph Power G^{k}

- G^{k} is the graph formed from the nodes of G, and with edges between all pairs of nodes with (hop) distance no more than k.
- For example:

Graph-Power Adjacency Matrix

- We can obtain the adjacency matrix of a graph power G^{k}, by taking the sum of the first k th powers of the adjacency matrix of G, and thresholding,
- i.e.,

$$
A^{(k)}=I\left[\left(\sum_{i=1}^{k} A^{i}\right)>0\right]
$$

- A is the adjacency matrix of a graph power G
- $A^{(k)}$ is the adjacency matrix of a graph power G^{k}
- $I(\cdot)$ is an indicator function, applied elementwise to the matrix.
- NB: Element (i, j) in A^{k} counts the number of paths of length k between i and j in the original graph.

Graph Power G^{k} example

Adjacency matrix powers

$$
A^{1}=\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Graph Power G^{k} example

Adjacency matrix powers

$$
A^{2}=\left(\begin{array}{llllll}
2 & 1 & 1 & 1 & 0 & 1 \\
1 & 3 & 1 & 0 & 1 & 2 \\
1 & 1 & 3 & 2 & 0 & 0 \\
1 & 0 & 2 & 3 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 2 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Graph Power G^{k} example

Adjacency matrix powers

$$
A^{3}=\left(\begin{array}{llllll}
2 & 4 & 4 & 2 & 1 & 2 \\
4 & 2 & 6 & 6 & 0 & 1 \\
4 & 6 & 2 & 1 & 2 & 5 \\
2 & 6 & 1 & 0 & 3 & 5 \\
1 & 0 & 2 & 3 & 0 & 0 \\
2 & 1 & 5 & 5 & 0 & 0
\end{array}\right)
$$

Graph-Power Adjacency Matrix

- To understand the above, count the number of a length 2 path between nodes i and j
- Such a path goes through an intermediate node $k \neq i, j$
- Hence the number of length two paths is

$$
\begin{aligned}
B_{i j} & =\sum_{k \neq i, j} A_{i k} A_{k j} \\
& =\sum_{k} A_{i k} A_{k j} \quad \text { because } A_{i i}=A_{j j}=0
\end{aligned}
$$

- By definition $B=A^{2}$
- Induction extends the argument to length k paths.

Graph-Power Properties

- For a (strongly) connected (di)graph G with n nodes, is G^{n} is a complete graph (or clique)?
- If the graph has diameter d, then G^{d} is complete.
- For an unconnected graph, the nth power will be a block-diagonal matrix whose blocks are formed by connected components.
- Square-root graph $G^{1 / 2}$ is a graph H such that $H^{2}=G$.
- NOTE: $G^{2} \neq G \times G$
- we will talk about multiplication in the next lecture

Subdivision

- Add an extra node into an edge e sub(G)

Further reading I

