Complex-Network Modelling and Inference
Lecture 13: Random Graphs: HOT and COLD

Matthew Roughan
<matthew.roughan@adelaide.edu.au>
Network_Modelling/

School of Mathematical Sciences,
University of Adelaide

August 21, 2018
Section 1

HOT graphs
Problem with “random” graph

- Random graphs are formed by taking lots of small, random operations, and building a larger graph
 - most dependencies are quite local
 - bottom-up construction
 - hope for “emergent” behaviour
 - lots of small, local behaviour produces global structure

- This is NOT how real, technological, physical networks arise
 - they are designed
 - often from the top down
 - often optimised against a set of constraints

- Even if a random network has all the metrics right, does that mean it is actually a good model?
 - for instance, most random graph models don’t include any redundancy component
 - consequently, they can be vulnerable to failures
 - real networks have designed redundancy
Example: Internet

- It was noticed early on that the “Internet” has a power-law degree \cite{FFF99}
 - this was one of the motivators for preferential attachment
 - ignore some of the holes in the paper for the moment
- The preferential attachment model has “central” high-degree node
 - if one of these fails, a preferential-attachment network might become partitioned
 - is this a worry for the REAL Internet
HOT

$HOT = \text{Highly Optimised Tolerances}$
$= \text{Highly Organised Tradeoffs}$
$= \text{Highly Optimised Topology}$
$= \text{Heuristically Optimised Topology}$

- It's a generic theory related to emergence or power laws.
- The idea is that power-laws emerge from systems that have been highly optimised.
- This is a pretty superficial take on it – there is a lot more, but we only need to see how it applies to networks.
HOT graphs

- Assume that networks are design through an optimisation process
- For the Internet
 - nodes are routers and edges are links between them
 - objective is to minimise the cost of these
 - routers have a maximum number of ports
 - effectively a maximum node degree
 - backbone routers, have a few, high-speed ports, but are very fast
 - edge routers have many low-speed ports
 - capacity constraint
 - must have enough capacity to carry given traffic
Is HOT a random graph model?

- HOT is different from other random graph models
 - the operations aren’t random (mostly)
 - the optimisation is nearly deterministic

- The randomness comes from the environment
 - in this case the (random) traffic that must be carries

- Random traffic matrix

\[T_{ij} = \alpha B_i B_j, \]

where the \(B_i \) are non-negative random variables.
It's hard to model costs so instead flip the problem around, so instead

$$x_{ij} \propto B_i B_j$$

$$\max_{\alpha} \sum_{i,j} x_{ij} = \max \sum_{i,j} \alpha B_i B_j$$

$$\text{s.t. } \sum_{i,j \in \mathcal{E}} x_{ij} \leq B_k, \forall k$$

(a)
Figure 6: Five networks having the same node degree distribution. (a) Common node degree distribution (degree versus rank on log-log scale); (b) Network resulting from preferential attachment; (c) Network resulting from the GRG method; (d) Heuristically optimal topology; (e) Abilene-inspired topology; (f) Sub-optimally designed topology.
Abilene ecosystem of networks [LAWD04]

Figure 4: CENIC and Abilene networks. (Left): CENIC backbone. The CENIC backbone is comprised of two backbone networks in parallel—a high performance (HPR) network supporting the University of California system and other universities, and the digital California (DC) network supporting K-12 educational initiatives and local governments. Connectivity within each POP is provided by Layer-2 technologies, and connectivity to the network edge is not shown. (Right): Abilene network. Each node represents a router, and each link represents a physical connection between Abilene and another network. End user networks are represented in white, while peer networks (other backbones and exchange points) are represented in gray. Each router has only a few high bandwidth connections, however each physical connection can support many virtual connections that give the appearance of greater connectivity to higher levels of the Internet protocol stack. ESnets and GEnT are other backbone networks.
Performance

5. DISCUSSION

Based on our constrained degree-based construction, we conclude that while theoretically it is possible to build highly efficient networks, practical engineering constraints make this extremely unlikely. For many networks, not only is high efficiency achievable, but it often is accompanied by a high likelihood of performance. This viewpoint is augmented if one considers the process of pairwise random rewiring of links.

One important feature of network design that has not been adequately addressed is the engineering details. What is also true is that the same space of all possible graphs that are of a certain size and have the same overall degree distribution can be very different in their structure, particularly when it comes to the engineering details. What is also true is that the same network types of variability in end user bandwidths at the edge (and thus service provider revenue) are highly variable; and the network in Figure 9(c) provides uniform high-performance bandwidth at the edge (and thus service provider revenue).

The examples discussed in this paper provide new insight into the processes and results of the construction of networks. In particular, we have shown that:

- There is a dense region in the space of all possible graphs that are of a certain size and have the same overall node degree distribution.
- This dense region is also no implied relationship between a network's core structure and the robustness of the network.
- The network in Figure 9(c) provides uniform high-performance bandwidth at the edge (and thus service provider revenue).
For every complex problem there is an answer that is clear, simple, and wrong.

M.L. Mencken

- Multiple models produce the same node-degree distribution
- They are VERY different
Section 2

COLD graphs
COLD [BRB14]

COLD = Combined Optimized Layered Design

- HOT pointed the way
 - but the optimisation model is not quite right
 - we really want to optimise actual costs
 - but costs in networks are complex

- Also, constraints in real networks are complex
 - traffic must be carried
 - ports limits must be respected
 - but real designs also include redundancy

- The resulting optimisation is too complex (for me)

- Tackle the problems in layers
 - the top-layer is *inter-PoP*
 - PoP = Point of Presence
 - here we optimise simplified costs
 - second layer is between routers
 - here we build redundancy
COLD top layer optimisation

- Inter-PoP
 - recognise that long links cost more
 - so for the moment ignore links inside one city/PoP
 - avoids some (router) constraints
 - reduces the size of the problem to be tractable
 - optimisation is NP-hard

- Randomness
 - PoP locations (as in SERNs)
 - traffic matrix (as in HOT)
COLD costs

Link costs

\[c_e = k_0 + k_1 \ell_e + k_2 \ell_e w_e, \]

where

\[\ell_e = \text{the length of link } e, \]
\[w_e = \text{the capacity of link } e, \]
\[k_i = \text{a set of constants}. \]

Node cost = a “complexity” cost

\[c_i = k_3 I (i \in N_H) \]

when node \(i \in N_H \) means it is a “hub” or a “core” node.
We have a collection of (Internet) network topologies
http://www.topology-zoo.org/

One interesting thing is the variety of networks
 ▶ some look like Abilene
 ▶ others are hub-spoke networks
 ▶ others are more meshy

The costs are flexible to allow all of these combinations
Optimisation is solved with a GA (Genetic Algorithm)
 ▶ we need to use a heuristic because the problem is NP-hard
 ▶ GA is still slowish, \(i.e., O(n^3) \)

Results
 ▶ are nicely tunable
 ▶ we can’t dispose of any of \(k_i \) (no simpler model)
 ▶ model parameters have operational meaning (costs)
 ▶ can match real variations of statistics

Matlab code

https://github.com/rhysbowden/COLD
Layering, hierarchy, redundancy and structure

- Now we need to build the router layer
 - incorporate redundancy
- But, often, lower layer is build with structure
 - hierarchy
 - graph operators

We’ll start talking about graph operators next
Estimation

- We haven’t worked out how to do estimation yet!
We haven’t worked out how to do estimation yet!
But I have a good idea how
Further reading I

