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Section 1

Spatially-Embedded Random Graphs
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Space and networks

Many networks have nodes embedded in space

Most physical networks
I e.g., electricity
I e.g., Internet
I e.g., air-plane routes

Many biological networks
I e.g., animal interaction networks
I e.g., epidemiological contact graphs
I e.g., neural networks

Many social networks
I most people have a locus around which they spend most time
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Space and networks

In many settings a longer link is more expensive in some sense

e.g., Longer electricity wires or telephone cables are more costly to
build

e.g., Contact between animals requires them to move over larger
distances, and hence expend more energy.

e.g., Neural networks – sending signals over longer distances can be
slower, costing speed.

e.g., Wireless connections require more power over longer distances,
and will therefore create more interference.

The natural consequence is that longer links will be less likely in spatially
embedded networks.
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Waxman graphs

Early examples

[Wax88] Take n = |N| nodes, distributed uniformly at random on a
square (or potentially some other space)

[ZCB96] connect nodes i and j randomly with probability

p = αf (dij).

where dij is the Euclidean distance between them.
I example 1

p = α e−βdij .

I example 2
p = α u(dij − r),

where u(x) is the unit step function (at zero).

key point is that links still chosen independently conditional on the
locations of the nodes
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Spatially Embedded Random Graphs (SERNs)
1 Place n nodes randomly within a defined region R of a metric space

Ω
1 randomly usually means uniformly, i.e., the probability of a node

occurring in any sub-region r is proportional to the area of r .
2 a metric space means it has a distance metric d(x , y)

2 Probability of an edge (i , j) is

pij = q fθ(s di ,j),

where

f (·) = a distance deterrence function,

q = a thinning parameter,

s = a scale parameter,

θ = other parameters.

Don’t panic! Most cases use standard Euclidean spaces, and simple
deterrence functions.
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e.g., Waxman Random Graphs

Points are chosen in the unit square, and

p(di ,j) = q e−sdi,j .

Notes

I use a different parameterisation from the literature
I to be consistent with other models
I because the literature gets it wrong about half the time

The idea has been reinvented multiple times, but Waxman was the
first as far as I know.
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e.g., Random Geometric Graphs

Points are chosen in the unit square, and

p(di ,j) = q H(1− sdi ,j),

where H(·) is the Heavyside step function.
Notes

Also called
I random plane network [Gil61]
I random connection models
I random distance graphs
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Other common examples

GER: pi ,j = q, where q ∈ (0, 1] [Gil59, ER60];

Clipped Waxman: pi ,j = min
(
q e−sdi,j , 1

)
, where

s ∈ [0,∞), q ∈ (0,∞);

Mixed Waxman-threshold: pi ,j = q e−sdi,jH(r − sdi ,j), where
s ∈ [0,∞), q ∈ (0, 1], r ∈ [0,∞);

Power law: pi ,j = q (1 + s di ,j)
−θ2 , (e.g., range-dependent random

graphs) [Gri02, Far02, GD07, HM03], and

Cauchy: pi ,j = q (1 + (sdi ,j)
2)
−1

[Avi08].

Exponential: pi ,j =
q e−di,j

L− di ,j
, [ZCD97];
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Common features

Distance deterrence function f (·) is non-increasing
I it doesn’t have to be, but all cases I know have this feature, and it

relates to the motivation

Usually in a finite region, but don’t have to be, and often we are
interested in asymptotic limits

Underlying point process of node locations is a n-D Poisson Process
I doesn’t have to be, but not much work where it isn’t
I produces the uniformly at random result
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Sidebar on the line picking problem

The line-picking problem is the problem of finding the probability
distribution of the length of a random line in some region. More precisely,
choose two points at random in the region, what is the distribution of
distances between them.

Lots of results are known
I e.g., square line picking, the probability density is

g(t) =


2t(t2 − 4t + π) for 0 ≤ t ≤ 1,

2t
[
4
√
t2 − 1− (t2 + 2− π)− 4 tan−1

(√
t2 − 1

)]
for 1 ≤ t ≤

√
2.

It’s not hard to calculate numerically even when it isn’t known

Major determining factors:
I size of region
I dimension of space
I “aspect ratio” of region
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Sidebar on the line picking problem
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Waxman in detail

Points chosen in R ⊂ Ω, and

p(di ,j) = q e−sdi,j .

Probability of an arbitrary link (prior to knowing the distances):

Prob{(i , j) ∈ E | q, s} = q

∫ ∞
0

exp(−st)g(t) dt = qG̃ (s),

where G̃ (s) is the Laplace transform of g(t) (from line-picking)
When

s = 0, the Laplace trans. becomes the normalisation constraint so
p(di ,j) = q = Prob{(i , j) ∈ E | q, s}
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Waxman in detail

Average number of edges

E[|E |] =
n(n − 1)

2
Prob{(i , j) ∈ E | q, s} =

n(n − 1)qG̃ (s)

2

From the handshake theorem, the average node degree is

k̄ = (n − 1)qG̃ (s)
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Waxman in detail

Distribution of the lengths of edges f (d |q, s) can be derived

f (d | q, s) = Prob {dij = d | (i , j) ∈ E}

=
Prob {dij = d & (i , j) ∈ E}

Prob {(i , j) ∈ E}

=
Prob

{
(i , j) ∈ E | d(i ,j) = d ; q, s

}
Prob {dij = d}

Prob {(i , j) ∈ E | q, s}

=
q exp(−sd)g(d)∫∞

t=0 q exp(−st)g(t) dt

=
g(d) exp(−sd)

G̃
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Waxman in detail

Average distance of edges

E[d | s] =
1

G̃ (s)

∫ ∞
0

tg(t) exp(−st) dt

= − G̃ ′(s)

G̃ (s)
.
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Parameter estimation

The above result suggests a moment-based estimator

We match the means to get s, e.g., , measure

d̂ =
1

|E |
∑
e

di ,j ,

and find ŝ such that
G̃ ′(s)

G̃ (s)
= −d̂

Estimate q exactly how we did for Gilbert-Erdős-Rényi
I convert it into estimate of Binomial parameter

It turns out this is also the MLE (Maximum Likelihood Estimator)

|N|, |E | and d̄ are sufficient statistics
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Example: voles [DAS+14]

Large marked-capture-recapture experiment with voles
I English-Scottish border over a 7-year period to study
I Field voles (Microtus agrestis)

Trap locations in a grid
I traps emptied multiple times
I contact between voles presumed if they were caught in same trap (on

separate occasions)
I generate multiple graphs at 4 different sites, and different time periods

Fitted several models
I their favoured model was similar to Waxman, but a little more complex
I I have done a Waxman fit
I most interesting is relationship between population density and ŝ
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Example: voles [DAS+14]
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As population density increases, voles travel shorter distances

Has important consequences for disease transmission
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Section 2

Small-world graphs
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Six degrees of Kevin Bacon

Here’s a game

Pick an actor (any actor will do)

Determine the shortest path to Kevin Bacon on the graph of movies
in actors collaborate

Famous result is that these paths rarely have more than 6 hops (6
degrees of separation).

I e.g., Nicole Kidman → Jeff Perry → Kevin Bacon
I actually there are lots of cases for this particular connection

http://oracleofbacon.org/cgi-bin/movielinks
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Experiment 1: letter forwarding

Stanley Milgram [Mil67] experiment

gave people envelopes and the name of a target stranger

mission: get envelope to destination

method forward to someone they know (on 1st name basis)

interesting result was how short the path-lengths were
I the average was 6
I 6-degrees of separation

lots of problems with the study, but also lots of interest
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Experiment 2: Caenorhabditis elegans

C. elegans [SH77, SSWT83] is a small (∼1mm) soil nematode (worm)

its very simple (only 959 somatic cells)

its neural network was mapped in the 70’s and 80’s [AT76, WSNB86]
I 302 neurons
I database available

http://ims.dse.ibaraki.ac.jp/ccep/
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Experiment 2: C. elegans
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Experiment 2: C. elegans

mean path length 2.45
I reported as 2.65 in [WS98]
I much smaller than the size (nodes = 302) of the network
I equivalent ER random network with same n and e mean distance is

2.34 (reported as 2.25 in [WS98])

mean (local) clustering coefficient 0.31
I reported as 0.28 in [WS98]
I equivalent ER random network with same n and e mean distance is

0.055 (reported as 0.05 in [WS98])

notably:
I distances are similar
I clustering is completely different
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Small world networks

Watts and Strogatz [WS98] noted that many networks have two
properties

I short path distances
I high clustering

They proposed a model
I start with a highly regular network with lots of clustering
I rewire some links at random
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Small world networks

Formally:

start with a regular ring network
I n nodes on a circle, linked to k nearest neighbours
I k even for it to be regular

rewire each link with probability p
I take an existing link, and send it to a random node
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Regular ring network

n = 20 and k = 4

p = 0

→ increasing randomness → p = 1
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Regular ring network
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Small world network clustering

Theorem

The clustering coefficient for the k-regular ring (and n > k) is

C = 1− e(e − 1)

k(k − 1)
,

where k is the number of neighbours (k even) and

e = k/2 + 1.

In the limit for large k is C → 0.75
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Small world network clustering

Proof.

We can derive the clustering coefficient for the regular ring as follows:

WLOG start from node 1.

Each node has k neighbours, so the clustering coefficient will be

C =
ne

k(k − 1)/2

where ne is the number of links between the neighbours.

It is easier to consider the number of missing links, so that

C = 1− nCe
k(k − 1)/2

where nCe is the number of missing links between neighbours.

List the neighbours in consecutive order around the ring from “left”
to “right”.
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Small world network clustering

continued.

The first neighbour will connect to k/2 nodes (including node 1,
which we ignore because it isn’t a “neighbour”), i.e., k/2 of the
nodes. So it misses k/2 links.

The second neighbour will connect to k/2 nodes to its right
(including node 1), and one to the left, so it misses k/2− 1 links.

Continue until we get to the k/2 node (immediately to the left of
node 1), and this will miss 1 link.

Repeat the same argument from the other side of the original node,
but remember to divide the total by 2 because links are undirected.

The total number of missed links will be

nCe = 2 [(k/2) + (k/2− 1) + · · ·+ 1] /2

= (k/2 + 1)(k/2)/2

= e(e − 1)/2.
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Small world network clustering

Make clustering a function of p, the probability of rewiring

ER random graph C (1) ' 0

Regular ring (in limit) has C (0) = 0.75

Small-world network p ∈ (0, 1) interpolates between these
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Small world networks path length

Distances in regular ring (n, k):

WLOG take an arbitrary start node, say 1

The furtherest node away on the ring is distance n/2

We can reach this node in steps of k/2

So distance to this node is dn/ke hops

But we want an average over all nodes. They are equi-spaced around
the ring, so where n is divisible by k a crude average can be obtained
by dividing by two.

E [L] =
n

2k

However, we should take into account the fact that the last hop,
won’t be length k/2 for many of the intermediate nodes. So the path
lengths will be slightly longer. The extra distance can be seen in the
first hop, where dividing by k/2 would tell you less than one hop, but
there is exactly one. It can be approximated by (k/2− 1)/(k/2).
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Small world networks path length

Make L a function of p, the probability of rewiring

ER random graph distances are fairly short (assuming connectivity)

L(1) ' log n/ log k

Regular ring
L(0) ' n/2k + (k/2− 1)/(k/2)

where k is the number of neighbours (k even)

Small-world network interpolates between these
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Small world networks features
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Generalizations
Small world on a lattice

a ring is 1D

what about starting with a lattice on a torus
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Parameter estimation

I haven’t seen any formal literature on estimation

Could hack up something that matches L̄ and C̄

Do I think it’s worth it?

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI March 7, 2024 37 / 41



Further reading I

D. G. Albertson and J. N. Thomson, The pharynx of caenorhabditis elegans, Phil.
Trans. R. Soc. London B 275 (1976), 299–325.

Chen Avin, Distance graphs: from random geometric graphs to Bernoulli graphs
and between, Fifth International Workshop on Foundations of Mobile Computing
(New York, NY, USA), DIALM-POMC ’08, ACM, 2008, pp. 71–78.

Stephen Davis, Babak Abbasi, Shrupa Shah, Sandra Telfer, and Mike Begon,
Spatial analyses of wildlife contact networks, Journal of The Royal Society Interface
12 (2014), no. 102, http:
//rsif.royalsocietypublishing.org/content/12/102/20141004.short.
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