Complex－Network Modelling and Inference
 Lecture 9：Application：PageRank

Matthew Roughan
＜matthew．roughan＠adelaide．edu．au＞
https：／／roughan．info／notes／Network＿Modelling／

School of Mathematical Sciences， University of Adelaide

March 7， 2024

Section 1

PageRank

Google PageRank

How does a search engine work [BP98]

- firstly crawl the web (spiders/robots)
- read each page, and index terms
- follow links, create graph of web
- order by relevence to the search criteria
- search "blank verse" returns 690,000 entries
- too many pages with equal "relevence"
- easy for punters to "game" the system

Google PageRank

How does a search engine rank the web pages it finds?

- ideally
- want to rate "quality" of page
- want to understand what makes people go to a site
- if a site is more popular, its likely it is more useful
- The original version of PageRank tries to do this
- if a page has more links to it, it must be more interesting
- if those links come from more "authoritative" sites, then all the better

Simplified Google Page-rank

- Start by giving all n pages equal rank $q_{i}=1 / n$
- Iterate

$$
q_{i} \leftarrow \sum_{j:(j, i) \in E} q_{j} / k_{j}
$$

where k_{j} is the out-degree of web page j

- In essence, each page "votes" for the other pages by dividing its rank amongst the ones it points to.
- A higher ranked page conveys more rank to those it points to.

Simplified Google Page-rank

- One way to view the process is to consider a random walk on the graph of HTML pages
- Markov chain with equal probability of taking any out-link
- Sinks are treated by re-initializing at a random page.
- For a recurrent Markov Chain (a connected graph) PageRank obtains the equilibrium distribution or probability you will be at page i after a large number of clicks

Linear algebraic formulation

Iterative formulation of Google PageRank

$$
\mathrm{q}^{(k+1)}=\mathrm{q}^{(k)} P
$$

P is the probability transition matrix:

- P is just formed by normalizing the rows of the adjacency matrix A
- $p_{i j}=a_{i j} / \sum_{j} a_{i j}$
- Note

$$
\mathrm{q}^{(k)}=\mathrm{q}^{(0)} p^{k}
$$

- As $k \rightarrow \infty$ we care about P^{k} 's limit

Linear algebraic formulation

Iterative formulation of Google PageRank

$$
\mathrm{q}^{(k)}=\mathrm{q}^{(0)} P^{k}
$$

P is the probability transition matrix:

- limiting behaviour of P^{k} depends on its eigenvalues

$$
U^{-1} P U=D
$$

$$
\begin{aligned}
& \text { where } P \mathrm{v}_{k}=\lambda_{k} \mathrm{v}_{k} \text { and } \\
& U=\left[\begin{array}{c|c|c|cc}
\vdots & \vdots & & \vdots \\
\mathrm{v}_{1} & \mathrm{v}_{2} & \cdots & \mathrm{v}_{n} \\
\vdots & \vdots & & \vdots
\end{array}\right] \text { and } D=\left[\begin{array}{cccc}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right]
\end{aligned}
$$

Powers of matrices

We can compute P^{k} for a diagonalizable matrix P by

$$
P^{k}=U D^{k} U^{-1}
$$

where

$$
D^{k}=\left[\begin{array}{llll}
\lambda_{1}^{k} & & & 0 \\
& \lambda_{2}^{k} & & \\
& & \ddots & \\
0 & & & \lambda_{n}^{k}
\end{array}\right]
$$

- $\left|\lambda_{i}\right|>1$ then it grows
- $\left|\lambda_{i}\right|<1$ then it decays
- $\left|\lambda_{i}\right|=1$ then it remains stable

Perron-Frobenius theorem

- Perron-Frobenius theorem
- non-negative matrix (entries ≥ 0) and irreducible \star irreducible $=$ associated graph is fully connected
- Perron-Frobenius eigenvalue (spectral radius) is real value r such that $r \geq\left|\lambda_{k}\right|$
- there exists a left eigenvector of r with non-negative entries
- Stochastic matrix P
- has rows summing to 1 , and ≥ 0
- $r=1$
- P^{k} depends on the eigenvector of $r=1$

Linear algebraic formulation

Standard equilibrium formulation of Markov chain

$$
\pi=\pi P
$$

P is the probability transition matrix:

- P is just formed by normalizing the rows of the adjacency matrix A
- π is the stationary distribution (equilibrium distribution)
- expresses balance of probability flows

$$
\pi_{j}=\sum_{i} \pi_{i} P_{i j}
$$

- Fast algorithms exist for computing eigenvectors

Damping Page-rank

- Above has some poor consequences, e.g., a page that points to others, but has no links to it will be isolated, and so have rank zero.
- It can also be gamed (create a thousand self referential web pages).
- It needs some damping

$$
q_{i}=\frac{1-d}{n}+d \sum_{j:(j, i) \in E} q_{j} / k_{j}
$$

- typical value of $d \sim 0.85$

HITS algorithm

- HITS by Jon Kleinberg separates authority from hubishness
- Hubs and authorities
- hubs have lots of (authoritative) links into them
« directory or encyclopedia
- authorities have lots of (hubs) that link to them
* actual information of value
- iteration
- start with hubs and authority scores of 1
- authority $(i)=$ sum of hub scores pointing to i
- hub $(i)=$ sum of authority scores pointing to i
- normalize by sums of squares for both scores

Further reading I

S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine, Seventh International World-Wide Web Conference (WWW 1998) (Brisbane, Australia), 1998.

