Complex-Network Modelling and Inference
 Lecture 2: Graph notation and representation

Matthew Roughan
matthew.roughan@adelaide.edu.au
https://roughan.info/notes/Network_Modelling/

School of Mathematical Sciences, University of Adelaide

March 7, 2024

Section 1

Graph Notation

Example graph topologies

- point-to-point
- linear or bus
- ring
- hub and spoke or star
- double star
- fully connected (mesh) or complete topology or clique
- mesh
- (spanning) tree
- hybrid

Point-to-point

description: back-to-back connection of two nodes examples:

- (old fashioned) printer connection
- serial link
- PPP (Point-to-Point Protocol)
comments:
- used as a component of a larger network

Bus

description: a single line (the bus) to which all nodes are connected, and the nodes connect only to this bus.
examples:

- physical structure of $10 \mathrm{Base2}$ Ethernet
- logical structure of 10BaseT Ethernet with a hub comments:
- design often matches a building (corridors)
- no redundancy (failures effect whole network)

Ring

description: Every node has exactly two branches connected to it, so that they form a (logical) ring.
example:

- SONET, FDDI, Token Ring
comments:
- two paths provide some redundancy (a dual ring)

Ring

description: Every node has exactly two branches connected to it, so that they form a (logical) ring.
example:

- SONET, FDDI, Token Ring
comments:
- two paths provide some redundancy (a dual ring)

Star

description: peripheral (spoke) nodes are connected to a central (hub) node. All communications is via the hub. examples:

- physical topology of 10BaseT Ethernet with a hub
- logical topology of 10BaseT Ethernet with a switch comments:
- hub node failures are critical

Double star

description: two stars, with two hubs, effectively, one is a redundant backup for failures.
example:

- used for many networks
comments:
- stars are sensitive to failures of hub, or links
- robust to a failure of hub, or single link

Fully connected or clique

description: every node directly connected to every other node (also called a clique).
example:

- frame relay network (at a logical level) comments:
- very robust to failures, but expensive

Mesh

description:

example:

- many real networks are somewhat meshy comments:
- somewhere between clique, and star
- robust to failures

Tree

description: nodes are arranged as a tree (no loops) examples:

- shortest path trees in routing
- spanning tree protocol (for switched Ethernets) comments:
- sensitive to failures

Hybrid

description: A combination of any two or more network topologies in such a way that the resulting network does not have one of the standard forms. comments:

- a tree connected to a tree is still a tree network
- example is a hierarchical network (as above)

Question

How many possible graphs are there with N nodes?

Simple Set Notation

| membership | $\omega \in U$ | $:=\omega$ is in U |
| ---: | ---: | :--- | :--- |
| subset | $L \subseteq U$ | $:=$ if $\omega \in L$, then $\omega \in U$ |
| intersection | $L \cap U$ | $:=\{\omega \mid \omega \in L$ and $\omega \in U\}$ |
| union | $L \cup U$ | $:=\{\omega \mid \omega \in L$ or $\omega \in U\}$ |
| set difference | $L \backslash U$ | $:=\{\omega \mid \omega \in L$ and $\omega \notin U\}$ |
| empty set | ϕ | $:=\{ \}$ |
| for all | $\forall \omega$ | $:=$ do something for all ω |
| count | $\|U\|$ | $:=$ the number of elements of U |
| | | $:=$ cardinality |

Other Notation

I usually use

- lower case for scalars, e.g., x
- lower-case boldface for (column) vectors, e.g., x
- upper-case for matrices or sets, e.g., A

When I write $\mathrm{x}<\mathrm{b}$ I mean every element of x is less than its corresponding element in b, so

$$
x_{i}<b_{i}, \quad \forall i
$$

and similarly for relational operators, e.g., \leq, \geq, \ldots

Graph Notation

An Undirected Graph $G(N, E)$ is

- a set of nodes $N=\{1,2, \ldots, n\}$ (also called vertices)

$$
|N|=n
$$

- a set of links $E \subseteq N \times N$ (also called edges or ties)

$$
E \subseteq\{(i, j): i, j \in N, i \neq j\}
$$

- in an undirected graph: links are symmetric

$$
(i, j) \in E \Rightarrow(j, i) \in E
$$

so we usually only list them in one direction

Graph Notation

A Directed Graph $G(N, E)$ is the same except that

- each link (or arc) (i, j) implies a link
- from source i
- to destination j
- The existence or otherwise of (i, j) tells us nothing about (j, i)

Example Directed Graph

Graph Notation

- The network is defined by the graph, $G(N, E)$
- Often we have additional information about links/nodes, e.g.,
- link/node capacities
- link weights
- link distances
- Model using functions, e.g., $W(\cdot)$

$$
W: E \rightarrow \mathbb{R}
$$

or, $F(\cdot)$

$$
F: N \rightarrow \mathbb{R}
$$

Some definitions

- null graph: a graph with no vertices or edges.
- empty graph: graph with no edges.
- infinite graph: ∞ edges or vertices (or both)
- subgraph: subgraph $G^{\prime}=G^{\prime}\left(N^{\prime}, E^{\prime}\right)$ of $G(N, E)$ has

$$
N^{\prime} \subseteq N \text { and } E^{\prime} \subseteq E
$$

- spanning subgraph: subgraph G^{\prime} of $G(N, E)$

$$
N^{\prime}=N
$$

- planar graph: one that can be drawn in the Euclidean plane without any crossing.

Definitions for digraphs

- digraph: a directed graph.
- arc: a directed edge with a source or origin and destination or target
- DAG: directed acyclic graph - a directed graph with no cycles.

Paths (Walks)

- a path is an ordered series of links such that the end of one is the beginning of the next, i.e.,

$$
P=\left(i_{0}, i_{1}\right),\left(i_{1}, i_{2}\right), \ldots,\left(i_{n-2}, i_{n-1}\right)
$$

where $i_{0}, i_{1}, \ldots, i_{n-1} \in N$
and $\left(i_{0}, i_{1}\right),\left(i_{1}, i_{2}\right), \ldots,\left(i_{n-2}, i_{n-1}\right) \in E$.

- we usually abbreviate it to something like

$$
P=i_{0}-i_{1}-i_{2}-\cdots-i_{n-1}
$$

and in fact it can also be defined as a series of nodes, such that the appropriate connections exist.

- a loop free or simple path contains each node at most once.
- often, paths are defined to be loop free
- walks allow cycles

Paths example

Consider the following well known problem: "A ferryman has been charged with taking a dog, a sheep, and a cabbage across the river. His rowboat can only take one at a time (plus himself). He cannot leave the dog with the sheep, or the sheep with the cabbage. How many ways can he make the transfer without repeating himself."
Denote

- Ferryman f
- Dog d
- Sheep s
- Cabbage c

Paths example

Label each possible state by who is on the left bank of the river. The following graph shows the only possible transitions.

There are two possible loop-free paths the ferryman can take.

Section 2

Graph Representations

Graph Representations

- The way you draw a graph doesn't matter
- the picture of the graph is not the graph
- two graphs can be isomorphic

Graph Isomorphism

Isomorphism expresses the fact that often the labels on a graph are arbitrary.

Definition

A isomorphism between two graphs G and H is a bijection ${ }^{1}$ between the nodes $N(G)$ and $N(H)$ of the two graphs

$$
f: N(G) \rightarrow N(H)
$$

such that any two vertices $u, v \in N(G)$ are adjacent if and only if $f(u), f(v) \in N(H)$ are adjacent. We say two graphs are isomorphic is such a function exists.

So an isomorphism is a change of labels, preserving the edges.

[^0]
Graph Isomorphism Example 1

Are these two graphs isomorphic?

Graph Isomorphism Example 2

Are these two graphs isomorphic?

Graph Isomorphism Example 3

Are these two graphs isomorphic?

Graph Isomorphism Example 3

Yes!

Graph Isomorphism Example 3

Yes!

Graph Isomorphism Example 3

Yes!

Graph Isomorphism

The graph isomorphism problem is very interesting

- There is no known polynomial time algorithm
- Babai has proposed (2016) a quasi-polynomial time algorithm, but it isn't verified yet
- It is thought that if $N \neq N P$, then this might be an intermediate problem, which is not NP-complete, but is harder than polynomial time.

Graph Representations

- The way you draw a graph doesn't matter
- two pictures of graphs can be isomorphic
- We talk about graphs mathematically, but when we have to implement any algorithm, we need to store a graph in a computer
- Graph Representations are equivalent ways to represent the information contained in a graph
- Each has advantages and disadvantages
- cost of memory/storage
- computational cost of various operations
- computational cost of complex algorithms

Edge List Representation

As per the mathematical definition $G(N, E)$
Example directed graph

$$
\begin{aligned}
N & =\{1,2,3\} \\
E & =\{(1,2),(1,3),(3,1)\}
\end{aligned}
$$

Adjacency Matrix Representation

Use a $|N| \times|N|$ binary indicator matrix

$$
A_{i j}= \begin{cases}1, & \text { if }(i, j) \in E \\ 0, & \text { otherwise }\end{cases}
$$

Example directed graph

We could store a weight for each edge in a weighted adjacency matrix, or could even store a pointer to an edge object.

Incidence Matrix Representation

Use a $|N| \times|E|$ matrix to say which edges use which nodes

$$
H_{i j}= \begin{cases}1, & \text { if node } j \in \text { edge } i \\ 0, & \text { otherwise }\end{cases}
$$

For a directed graph use -1 to indicate source node Example directed graph

$$
H=\begin{gathered}
\underset{\substack{2}}{\text { edge }_{12}} \\
\text { edge }_{31}
\end{gathered}\left(\begin{array}{ccc}
\text { mode }_{1} & \text { node }_{2} & \text { nodes }_{3} \\
-1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 0 & -1
\end{array}\right)
$$

Neighbourhood/Adjacency List Representation

Create a list of nodes, and for each node, list its neighbours Example directed graph

1: 2,3
2 :
3: 1

Basic Graph Operations

```
add_node(G, i)
remove_node(G, i)
add_edge(G, (i,j))
remove_edge(G, (i,j))
adjacent(G, i,j)
...
```


Basic Graph Operation Costs

	Edge List	Adjacency Matrix	Neighbourhood List
Storage	$O(\|N\|+\|E\|)$	$O\left(\|N\|^{2}\right)$	$O(\|N\|+\|E\|)$
Add node	$O(1)$	$O\left(\|N\|^{2}\right)$	$O(1)$
Add edge	$O(1)$	$O(1)$	$O(1)$
Remove node	$O(\|E\|)$	$O\left(\|N\|^{2}\right)$	$O(\|E\|)$
Remove edge	$O(\|E\|)$	$O(1)$	$O(\|N\|)$
Adjacent	$O(\|E\|)$	$O(1)$	$O(\|E\|)$

- You can make adjacency matrices more attractive using sparse matrices.
- Incidence matrices aren't very efficient because you (effectively) have to change the entire matrix to add or remove an edge of node, but they are useful mathematical representations
- Preferred option depends on what you are doing with the graph, and how sparse/dense the graph is.

Further reading I

[^0]: ${ }^{1}$ Loosely, a bijection is a function between two sets where each element of one set is paired with exactly one element of the other set and visa versa.

