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ABSTRACT

Linear programming is one of maths’ greatest contributions to in-
dustry. There are many places where linear programming could be
beneficially applied across more than one company, but there is a
roadblock: companies have secrets. The data needed for joint op-
timization may need to be kept private because of concerns about
leaking competitively sensitive data, or due to privacy legislation.

Recent research has tackled the problem of privacy-preserving
linear programming. One appealing group of approaches uses a
‘disguising’ transformation to allow one party to perform the joint
optimization without seeing the secret data of the other parties.
These approaches are very appealing from the point of view of sim-
plicity, efficiency, and flexibility, but we show here that all of the
existing transformations have a critical flaw.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—Linear programming;
K.4.4 [Computers and Society]: Electronic Commerce—Distribu-

ted commercial transactions

General Terms

Algorithms, Security

1. INTRODUCTION
Optimization techniques are valuable tools. They can help busi-

nesses improve efficiency and minimise costs, but often compa-
nies have private data they wish to protect. This may prevent them
from taking part in joint-optimization ventures with partners, even
though such ventures could be mutually beneficial. For example,
delay of traffic delivered through a shared network could be re-
duced if the network operators cooperated. However, they may be
unwilling to do so for fear of (i) revealing company secrets, (ii)
breaching privacy legislation, or (iii) possible embarrassment.

Often, optimization problems can be formulated as linear pro-
grams. In particular, we consider jointly-defined linear programs
where two or more parties each contribute various components to
form a global optimization problem. The critical information to be
kept hidden is dependent on the situation but could include the con-
straint set (which may contain private information about budgets,
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financial health, production capacity, or network layout) and the ob-
jective function (which may express costs or company aims). The
goal is to solve the joint-program and yet keep the private informa-
tion hidden as much as possible (acknowledging that the optimum
solution must unavoidably leak some information about the param-
eters). We shall refer to this type of problem as ‘privacy-preserving
linear programming’.

More formally, suppose that we have two parties, Alice and Bob,
who each hold some private data. They wish to combine their data
into a single linear program, of the general form

max c
T
x

s.t. Mx ≤ b

x ≥ 0,

(1)

where the various components come from the two parties. For in-
stance M = M1 + M2, b = b1 + b2, and c = c1 + c2, where
M1, b1 and c1 are contributed by Alice (and must be kept secret
from Bob), and M2, b2 and c2 are likewise held by Bob (and must
be kept secret from Alice). The meaning of these components will
be discussed later, but note that the privacy requirement prevents
us from using standard linear programming techniques such as the
Simplex algorithm.

To the best of our knowledge, two different approaches to privacy-
preserving linear programming have been developed. The first is
transformation-based. Methods of this type are essentially heuris-
tic and disguise the linear program via random matrices. One party
can then solve the problem in the disguised domain. Two such
methods have been proposed by Du [4] and Vaidya [13]. However,
we present a flaw in these techniques. The problem is so severe that
the answer returned by them may actually be infeasible.

The second approach invokes formal cryptographic techniques

[8, 12, 14] to implement a privacy-preserving version of the popu-
lar Simplex method. These methods hide the private data by using
cryptographic techniques at each step in the algorithm. The solu-
tion in [14] is the most efficient, but it currently only applies to the
case where one party owns the objective function, and the other
owns the constraints.

Though the formal cryptographic approaches provide very good
security, there are some appealing aspects of the transformation-
based approaches. They avoid much of the conceptual complex-
ity of the cryptographic techniques, because the information hid-
ing protocols are only needed once at the start of the algorithm,
not at each step. This also drastically reduces the computational
complexity and communications overhead of the cryptographic ap-
proach. Moreover, the user is no longer bound to use Simplex,
but can take advantage of the last half-century of improvements to
linear-programming algorithms. Finally, we can use the full power
of floating point arithmetic.

In this paper we first provide a precise explanation of the flaws
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in the existing transformation-based methods. We then show that
Vaidya’s transformation is valid under additional restrictions, but
unfortunately this comes at the expense of security unless an un-
trusted third party is available. Developing other transformation
methods with improved security is the subject of ongoing research.

2. BACKGROUND AND RELATED WORK

2.1 Secure Multiparty Computation
The idea of Secure Multiparty Computation (SMC) was intro-

duced by Yao [17, 18]. He considered two parties, one with private
data x, and the other with private data y, who wish to jointly com-
pute f(x, y), such that only the output is public, while the private
data remains hidden from the other person. Yao presented general
results, for the two-party case, showing that any function f(x, y)
that could be represented as a Boolean circuit could be computed
in a secure fashion [18]. Yao’s work was soon generalized to the
n-party case by Goldreich, Micali and Wigderson [5]. Together,
these papers proved the remarkable result that any polynomial-time
function could be computed in a secure fashion.

An important issue is how to model possible cheating by the par-
ticipants. The most common model is to assume all participants are
“honest-but-curious”, which means that they will follow the proto-
col correctly, but will conduct extra calculations ‘on the side’ in
an attempt to gain information about others’ private data [5]. The
goal in designing secure protocols is to ensure such additional cal-
culations are fruitless. One can also allow “malicious” adversaries,
who may deviate from the protocol [5]. In this paper we adopt the
“honest-but-curious” model, since we assume that the solution to
the joint-LP is of mutual benefit to all parties, so no-one has an
incentive to deliberately sabotage the protocol.

At the time of its inception, SMC was of largely theoretical in-
terest. However, the development of more efficient algorithms and
increased computing power has led to a number of real-world ap-
plications. These include privacy-preserving data mining [9, 15],
secure voting [2], and secure auctions [10].

Last year saw the first large-scale commercial application of SMC,
namely an online double-auction of sugar-beet licenses in Den-
mark [1]. The auction was successful, involving 1200 bidders and
25,000 tonnes of production rights. SMC provided a low-cost elec-
tronic solution and circumvented the need for security policies.

2.2 Privacy-Preserving Linear Programming
A Linear Program (LP) is an optimization problem of the form

shown in (??), which has a linear objective function and linear con-
straints [16]. Many years of effort have gone into deriving fast,
computationally efficient methods for solving LPs. For instance,
the Simplex method [3] and Interior Point Methods [7]. However,
these all assume that c, b and M are completely known.

Privacy-preserving linear programming involves LPs with pri-
vate data. We can express the two-party problem as

max (c1 + c2)T
x

s.t. (M1 + M2)x ≤ (b1 + b2)
x ≥ 0,

(2)

where x is an n-dimensional vector of variables, c1 + c2 is an n-
dimensional vector of objective function coefficients, M1 + M2

is an m × n matrix of constraint coefficients (where there are m

constraint inequalities) and b1 + b2 is an m-dimensional vector of
constraint values. The components {c1, M1,b1} contain Alice’s
data, while {c2, M2,b2} contain Bob’s data. Precisely which of
these components are private depends on the situation. We now
outline some possible scenarios.

The constraint matrix (M1 + M2) can be either:

1. Public: known in full by both parties;

2. Private: known in full by only one of the parties (which
means either M1 = 0 or M2 = 0); or

3. Shared: known in part by each of the parties, such that each
party knows only a subset of the total constraint coefficients.
In this case the constraint matrix can either be:

• Row-Partitioned: each party contributes entire rows

of the constraint matrix. Thus M1 + M2 is row par-

titioned, i.e. M1 + M2 =

»

M ′

1

0

–

+

»

0

M ′

2

–

. This

case corresponds to having a set of shared variables,
but constraints that express private informaiton.

• Column-Partitioned: each party contributes entire col-

umns of the constraint coefficient matrix. Thus M1 +
M2 is column-partitioned, i.e. M1+M2 =

ˆ

M ′

1 0
˜

+
ˆ

0 M ′

2

˜

. Here each party controls a subset of private
variables, with collaborative constraints.

• Mixed: each party contributes a mix of rows and columns.

Similarly, the objective function coefficients c1 + c2 can be ei-
ther (i) public, (ii) private, or (iii) shared. In the case of (iii), the
only options are column-partitioned or mixed, since we only have
a single row vector.

Privacy-preserving linear programming is a relatively new re-
search area. Li and Atallah [8] and Toft [11, 12] each implement a
privacy-preserving version of the popular Simplex method, where
Toft [12] identified several problems with Li and Atallah’s tech-
nique. Although different in their execution, both methods utilise
cryptographic techniques such as homomorphic encryption, blind
and permute procedures, and secret sharing at each step of the al-
gorithm. By considering a specific class of problems, Vaidya [14]
devised a more efficient approach based on revised Simplex.

Du [4] presented another, much simpler, method, based on dis-
guising the problem using random matrices, but it is flawed. Part
of the flaw has been recognised by Vaidya [13] but his alternative
method still has the potential to produce infeasible output. We first
describe Du’s method in its original form, and what goes wrong
during its execution, before discussing Vaidya’s version.

3. DU’S TRANSFORMATION METHOD
The main idea behind Du’s method is to convert the original LP

into an equivalent system in which the constraints have been dis-

guised by multiplication with random matrices. One party solves
the disguised problem, and then the solution is converted back to
the original domain. Du’s full protocol can be found in [4]. Central
to Du’s method is the assertion that the transformed LP is equiva-
lent to the original LP. Here we consider the critical elements and
see why this equivalence fails.

The original LP — which we will refer to as Program A — is
shown below.

Program A
max f(x) = c

T
x

s.t. Mx ≤ b

x ≥ 0,

(3)

Program A is disguised via 2 random matrices: an m×m matrix
P and an n × n matrix Q. These matrices are populated with ran-
dom elements, with the restrictions that the matrices are invertible,
and the elements of P and Q−1 are all strictly positive. Bob gen-
erates the random matrices, and then Alice and Bob jointly engage
in secure multiplication protocols such that only Alice receives the
coefficients of the disguised program, Program B, given as:
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Program B
max f̂(x̂) = ĉ

T
x̂

s.t. M̂ x̂ ≤ b̂

x̂ ≥ 0,

(4)

where M̂ = PMQ, b̂ = Pb, ĉT = c
T Q, and x̂ = Q−1

x.
Alice must not know P or Q, and Bob is not permitted to know

Program B. Otherwise, they could derive the other’s private data.
Alice solves Program B and obtains the solution x̂

∗. She sends
this to Bob, who transforms it back to the original variables by
premultiplying by Q to obtain: x

∗ = Qx̂
∗, which Du claims is the

optimal solution to the original program.
On the surface, the transformation process from Program A to

Program B appears to be valid — after all, QQ−1 is simply the
identity matrix. Indeed, for all x,

f(x) = c
T
x = c

T
QQ

−1
x = ĉ

T
x̂ = f̂(x̂). (5)

Also, since P and Q−1 contain strictly positive elements, they
should not disturb the inequality constraints or the non-negativity
constraints (see [4, Theorem 4.3.1]).

3.1 Why Programs A & B are not equivalent
For Du’s method to hold, Programs A and B need only have the

same feasible region (if we plot them both in terms of x) since we
have shown in (5) that the objective functions are equivalent.

The problem with Du’s method is that by choosing P and Q−1

to be positive, we force P−1 and Q to contain some negative ele-
ments. These play havoc with inequality constraints: for a simple
example consider what happens to the constraint x ≥ 0 when we
multiply by −1; it becomes x ≤ 0. The combination of negative
matrix elements and the inequality constraints mean that the con-
straints forming the two feasible regions are not equivalent. More
precisely, if the constraint x̂ ≥ 0 is satisfied in Program B, this
does not guarantee that the corresponding constraint, x ≥ 0 will
be satisfied in Program A, and likewise M̂ x̂ ≤ b̂ does not guaran-
tee that Mx ≤ b.

Let us consider a brief example to bring home the point. We
consider the following optimization problem (Program A):

max f(x) = 5x1 + x2

s.t. 2x1 + 3x2 ≤ 12
2x1 + x2 ≤ 8

x1, x2 ≥ 0,

(6)

and transform it using matrices P =

»

1 3
5 1

–

and Q−1 =

»

1 2
2 1

–

.

Obviously, these are not random, but the problem is generic and
will occur with almost all choices of P and Q−1. The transformed
problem (Program B) is then

max f̂(x̂) = −x̂1 + 3x̂2

s.t. 4

3
x̂1 + 10

3
x̂2 ≤ 36

20

3
x̂1 + 8

3
x̂2 ≤ 68

x̂1, x̂2 ≥ 0.

(7)

The optimal solution for the original LP (6) is x
∗ = (4, 0), with

objective function fmax = 20. The solution to the transformed

problem (7) is x̂
∗ = (0, 10.8) with f̂max = 32.4. When we trans-

form back into the original coordinates this solution corresponds to
x
∗ = (7.2,−3.6) which is infeasible since x∗

2 is negative.
How can the transformed problem result in an infeasible solu-

tion? Consider the associated feasible regions shown in Figure 1.
Program A’s (6) feasible region is shown in black, while the feasible
region of Program B (7), represented in the original coordinates, is
shown in grey. Notice that it is larger than the original feasible re-
gion, and it even extends outside the non-negative quadrant (where

!4 !2 0 2 4 6 8
!4

!2

0

2

4

6

8
Feasible Regions ! Du’s Method

x
1

x
2

 

 
Program B

Program A

Figure 1: Feasible region of Program A (black) and Program B

(grey) after applying Du’s method.

feasible solutions cannot exist). Hence, it is possible to find a solu-
tion to (7) that is infeasible for (6).

By choosing P and Q−1 to be strictly positive, we ensure that
any feasible solution to Program A also satisfies the constraints of
Program B, and hence the feasible set of A is a subset of that of B.
The problem with Du’s transformation is that the converse is not
true, since the inverses of P and Q−1 contain negative elements.
Hence we cannot correct the problem by instead requiring P−1

and Q to be positive, as this will break the equivalence in the other
direction.

4. VAIDYA’S METHOD
Vaidya [13] recognised that Du’s method fails in some cases,

without providing detail. Vaidya developed a new method for a
specific scenario in which one party holds the objective function,
and the other party holds all the constraints. For this case, he pro-
posed a transformation approach based on Du’s method, with the
difference being that matrix P is not used, so the disguise is im-
parted only by matrix Q. Vaidya avoids the troubles caused by
P ’s impact on the inequality constraints, but his approach does not
resolve the problems with the non-negativity constraints. For in-
stance, let’s reuse the example program (6), and this time apply
only the associated Q−1 to arrive at a new Program B:

max f̂(x̂) = −x̂1 + 3x̂2

s.t. 4

3
x̂1 + 1

3
x̂2 ≤ 12

x̂2 ≤ 8

x̂1, x̂2 ≥ 0,

(8)

where x̂ = Q−1
x, M̂ = MQ, ĉT = c

T Q.
The transformed problem (8) has solution x̂ = (0, 8) with f̂max =

24. When we transform back into the original coordinates, we ob-
tain x

∗ = (5 1

3
,−2 2

3
), which is once again infeasible since x2 is

negative.
Comparing the feasible regions of Program A and Program B

in Figure 2, we see that the feasible region of Program B is still
larger and extends outside the non-negative quadrant. However,
within the non-negative quadrant the feasible regions now agree, as
a result of removing P from the transform.

4.1 Validity versus Security
The oversight in both methods is that we cannot choose random

matrices A such that both A and A−1 are strictly positive. If we re-
lax strict positivity to allow non-negative elements (we allow zeros)
then there are some matrices that satisfy this requirement. These
are generalized permutation matrices (products of non-singular di-
agonal and permutation matrices) [6, Theorem 1.1].
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Figure 2: Feasible region of Program A (black) and Program B

(grey) after applying Vaidya’s method.

So Vaidya’s transformation will be valid if we require Q to be a
generalized permutation matrix. We can then deconstruct Q into a
positive diagonal scaling matrix D and a permutation matrix L.

The drawback is that generalized permutation matrices provide
a much lower degree of disguise, and can severely compromise se-
curity. In fact, if Alice knew the permutation L, then she could use
her knowledge of c and ĉ to deduce D precisely. There are only
finitely many possible permutations, and so Alice can consider each
in turn. For instance, Alice might start by guessing the permutation
to be Li, and from this determine Di and hence Qi such that

ĉ
T = c

T
Qi. (9)

In the current form of the problem Alice also learns both the
transformed solution x̂

∗, and the untransformed solution x
∗, and

so can then test whether x
∗ = Qix̂

∗. If it is not, then she can
rule out that particular permutation. She will in fact be able to rule
out most permutations in this fashion. The only permutations she
cannot eliminate occur when x

∗ contains repeated values: in these
cases she cannot eliminate permutations that swap such repeated
values.

Consider our example (6) again and choose Q = DL to be the
generalized permutation matrix

Q =

»

2 0
0 1

2

– »

0 1
1 0

–

=

»

0 2
1

2
0

–

.

Alice knows c
T =

ˆ

5 1
˜

, and from Bob she receives ĉ
T =

c
T Q =

ˆ

1

2
10

˜

. Since Alice knows that Q only applies a gener-
alized permutation, she considers the two possible cases:

Case 1: L1 =

»

1 0
0 1

–

and hence Q1 =

»

1

10
0

0 10

–

Case 2: L2 =

»

0 1
1 0

–

and hence Q2 =

»

0 2
1

2
0

–

.

Alice knows the transformed solution x̂
∗ = (0, 2) and the un-

transformed solution x
∗ = (4, 0), and just tests which Qi matrix is

consistent.

i = 1 : Q1x̂
∗ =

»

1

10
0

0 10

– »

0
2

–

=

»

0
20

–

6= x
∗

i = 2 : Q2x̂
∗ =

»

0 2
1

2
0

– »

0
2

–

=

»

4
0

–

= x
∗

Therefore Alice knows that Q = Q2, and can immediately deduce
Bob’s private data M . Thus this approach does not have satisfac-
tory security.

However, the security breach described can be avoided if we as-
sume the existence of an untrusted third party, Eve. We can let Eve,

instead of Alice, solve the disguised program, thus eliminating the
attack arising from any party knowing both ĉ and c.

5. CONCLUSIONS
The privacy-preserving linear programming method proposed by

Du [4] is incorrect due to problems with the disguise transforma-
tion. Specifically, the feasible region of the transformed LP is not
equivalent to the feasible region of the original LP, leading to in-
feasible solutions being returned by the method. Vaidya [13] went
some way to improving Du’s transformation, but his method can
still give infeasible results.

The door is open for new ways of implementing ‘disguising’
transformations, or for new methods altogether that manage to achi-
eve some of the desirable qualities of Du’s and Vaidya’s methods,
such as conceptual simplicity, computational simplicity, and the
freedom to use any commercial LP solver. This is the subject of
ongoing research.
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