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A Comparison of Poisson and Uniform Sampling
for Active Measurements

Matthew RougharmMember, |IEEE,

Abstract—Active probes of network performance represent Naively, the probe packets would be separated by a fixed
samples of the underlying performance of a system. Some effort sampling interval. However, there is the possibility that peri-
has gone into considering appropriate sampling patterns for 4~ samples may be synchronized with a periodicity in the
such probes: i.e., there has been significant discussion of the h . - .
importance of sampling using a Poisson process to avoid biasesSyStem under obsgrvauon, either by achent, or deliberate
introduced by synchronization of system and measurements. Malfeasance. In this case the probes might not observe the
However, there are unanswered questions about whether Poissontrue system behaviour.
probing has costs in terms of sampling efficiency, and there is |t is not clear how prevalent periodicities are in the modern
some misinformation about what types of inferences are possible |nernet, but there are certainly theoretical grounds for their

with different probe patterns. This paper provides a quantitative . L
comparison OFf) two gifferent sampll?ng mgthods. Thg paper also existence. Auto-synchronization of network protocols [6], [7],

shows that the irregularity in probing pattemns is useful not just large volumes of streaming traffic, or other applications that
in avoiding synchronization, but also in determining frequency periodically make requests (such as NTP) may cause period-

domain properties of a system. The paper provides a firm basis jcities. Furthermore, regular samples are easy to predict, and
for practitioners or researchers for making decisions about the e rafore manipulate, perhaps by deliberately scheduling all
type of .sampllng they should use in a p{irtlcular applications, dat ket f i h b ticinated
along with methods for the analysis of their outputs. ata packets away from imes when probes are anticipated.

In addition, the probe packets themselves alter the network,
and there is the potential that they cause the network to
synchronize around their own period (in addition to other
impacts, for instance see [8]). Hence there is reasonable cause
to fear synchronization of probes and network.

Active measurement of system performance is an integralMoreover, some sampling problems can occur where the
part of Network Quality Assurance (NQA). Fault detectiosamples and system periodicities are not synchronized, or even
and Service Level Agreement (SLA) verification are just twwhere the system is a-periodic but contains high-frequency
applications. A number of companies offer active measuremeguatriodic components that result aliasing
services or devices (e.g., Matrix NetSystems, Keynote, Niksun,Poisson sampling steps away from naive uniform sampling
Brix Networks, etc), and there are now a number of Inteby sending probes at the epochs of a Poisson Process. A result
net Engineering Task Force (IETF) Requests for Commerksown by the acronym PASTA (Poisson Arrivals See Time
(RFCs) [1]-[5] describing standards for such measuremepkerages) ensures that (under relatively weak conditions) the
However, the basic statistical properties of such measuremeaterage state observed by such probes will converge to the
are still poorly understood. true average of the system under observation. Furthermore,

Active probing is notionally simple. We wish to understanevhen Poisson sampling is used, the next arriving packet
the performance of a packet network, and so spmube cannot be anticipated, and so such measurements are harder
packets into the network, and measure the performancetofmanipulate.
these probes. These packets are samples of the performance Pbisson sampling therefore avoids some of the problems of
the underlying network. They are usually performed from endmniform sampling. However, little work has considered the cost
to-end across a network, this being one of the chief advantagéshis type of sampling. A number of comments have been
of such an approach: no special access to the networknirade about difficulties introduced, for instance, the problems
question is required, and so measurements can be easily mgidmaking some types of measurements such as delay varia-
by customers or researchers. tion. At least one IETF RFC [9] has been written in response

Many samples may be needed, both to provide bettgrthese issues, but in many cases it is hard for a practitioner
sampled statistics, and to allow observations of changestindecide which type of measurement would be best for their
the network over time. However, there are clear scalabilitypplication. This paper is aimed at providing quantitative, and
issues: givenV end hosts, there al¥? end-to-end paths, and qualitative advice towards making such decision by providing
if each path requires many measurements this could creata #horough analysis of the advantages of each approach.
significant network load. Hence, the pattern of probing mustFor instance, litle work has considered implications for
be carefully planned. measuring higher-order statistics of the network (not just

, , __averages). Can Poisson sampling measure properties such
Matthew Roughan is with the School of Mathematical

Sciences, at the University of Adelaide, Adelaide 5005, Australi?;s_the delay variation or the power spectrum of a system?
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to perform most of the tasks we might reasonably wish tmore complex functions of these metrics to attain measures
perform with Internet measurements, e.g., estimation of  such as the subjective performance of an application, e.g.,

1) the mean, variance, and variance of differences (e.g., tHelP. Many examples of tools to perform such measurements

delay variation), may be found at [10].
2) the frequency content via a periodogram, There are a number of ways in which we may collect data
3) the autocorrelation, about network performance:

without interpolation. This paper also presents results shoffiféct measurements:|t is possible for a router, or switch

ing the advantages and disadvantages of such sampling{Qrmaintain information about its own performance. For in-
summary stance to maintain data on the number of packets or bytes

« Poisson sampling results in a loss of efficiency, i.e., mol8 buffers, or .the number of packets d_ropped. In prmm‘ple,
gh information could be collected without sampling (i.e.,

measurements are needed to obtain results of the sa Id b lected in en h detail to reconstruct the exact
accuracy, but the efficiency loss is much smaller than thgeould be cofiecte enough detail to reconstruct the exac

natural variation of measurement efficiency as a result g?mple path). However, in practice there are limits on the (fast)
changing network load memory required to store such information, and the rate at

. Both periodic and Poisson sampling can be used %mch it is collected. Despite its potential to be one of the best

perform harmonic analysis of the network to examine ROUTCES of performance measurements available, it is often one

for evidence of network periodicities. Poisson samplin fcg\l/z V\;)Orgsgés- The more common method used to infer
actually has an advantage in this regard — the Lomb- ' . i
: . . network performance is the well developed approach of active
Scargl_e Periodogram (Sect|(_)n IV) based on wreg_ulawobing pfor instance see [1]-[5] [1??] [1!13]p In this ap-
sampling can detect frequencies greater than the pem:g‘?bach ’we sengrobepackets into tr,le net;/vork with precisely
sampling Nyquist frequency, allowing us to perfor ' ) ) . .
anaISseg thgtqwould bg othe):wise imp?)ssible P controlled departure times, and measure their arrival times
. Autocovariances of the processes of interest can be e§ jsewhere in the network. Such probes require installation
mated, and from these we can infer the delay variati M probe equipment into a network, but this equipment is
metric:c, that we would obtain from uniform orobes c{ypically fairly cheap, and it does not require special access
Poi i . il £ pl ’ I_to a network (for instance, the boxes could be installed by
0ISSON sampling 1S a special case ot irregufar Samplggcustomer, or researchers). There are many possible types
methods, but other types_of wregulgr _sampllng \_NOUId ha\fﬁ probe: e.g., ICMP echo probes, TCP SYN/ACK probes,
many of th_e same benefits, and S|m|!ar analysis could S probes, HTTP page downloads, as well as dedicated
appllgd. Th|s_ IS important hecause It is hard to producep%be protocols, and many types of measurements: e.g., round-
ge_?::.mely P0|s_son raffic st(rjearg{.h g the t trip or one-way measurements. These factors have led to
'S paper 15 concerned with companng the two maifi. e probing being the most widely deployed form of IP
types of probing, so that practitioners will know which t erformance measurement
use in a partlcullar cwcumstance,l and researchgrs wil h_ fssive traffic measurements:An alternative approach is
a better foundation for research in more complicated actiye < e traffic measurements. We can infer network perfor-
probing problems such as network tomography or bandwi ance through measurements of the arrival time of a packet

estimagonl.( FOHO\éVing th_e introguctlion,dthe Ea_pers pre_zsen{lﬁ multiple points [15], [16]. This approach can also provide
some background, notation and related work in Section Hata of very fine detail, but it also has limits. Firstly, such

This is followed by 590.“0” I, which prowde§ results formeasurements are limited to the locations of packet monitors.
the accuracy and efficiency of the two probing method

‘ , Dedicated packet monitors are not typically expensive, but
Section IV compares the two methods on the basis of how they, e hon_negligible installation and maintenance cost, and

may be used to estimate time-series properties of the obseryg ire privileged access to the network. More importantly,

system, such as power spectra and autocorrelation functio ssive monitoring of this type can only infer performance on

Such measures havg been frequently “Se‘?' to characte fhs that carry traffic. Generally, passive measurements can'’t
Internet systems (for instance see the large literature on self-

L . ) . ntrol the sampling pattern, and so can’t guarantee Poisson
similarity in network traffic). Section V discusses some of th ping p g

her i h he i f ; ) ﬁré%eriodic samples.
other issues, such as the issue of measuring properties suc r a practical comparison of some of the above techniques
reordering of packets. The paper concludes in Section VI.

see [17]. In this paper we will be mainly concerned with active
probing because we have control over the sample times, where
with passive measurements we are reliant on existing data
A. Performance measurement technologies traffic. However our control over sampling times only applies
There are many measurements we may collect fromt@asamples of network performance — the time at which each
network: traffic, topology, or performance measurements. Wedividual queue in the network is sampled will be delayed by
focus here on measurements of network performance, thowtiandom amount at previous queues. We discuss this issue
note that other supplemental measures may be required (enpre completely in Section V-B.
network topology) to make sense of this data. Network perfor- Even simple measurements such as delays are comprised of
mance can mean many things, for instance: reachability, delaypumber of components:
loss, jitter, reordering, and bulk throughput. We can also form 1) Packet processing delaig the delay to perform tasks

Il. BACKGROUND AND RELATED WORK
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such as forwarding table lookup, and is very small ilndicators show when arbitrary events occur. Note that
modern high-speed routers (e.gg, 1 ms). E[I(X(t) € B)] = P{X(t) € B}, and we may therefore use
2) Packet transmit timas the time from starting to sendindicators to construct other functions of the process.
the first bit of a packet onto the wire, until the last bitis 1) Sampling: We shall assume that we can measure the
finished. It is typically small for high speed links, e.g.processX (¢) at sample epoch®},Ts,...,Tx. The measure-
~ 4.8us for a 1500 byte packet on an OC48 link. ments form a discrete-time random process (or time series)
3) Propagation delayis the delay a packet experiences oiX (7), X (Ts), ..., X (T ), which we will sometimes denote
the wire, and is given by the physical distance divided by, X5, ..., X. The two main cases considered in this paper
the speed of light in fibre (roughly 200,000 km/s), e.gare periodic sampling, wher&, = nt, for some inter-
~30 ms for an East to West Coast in North America. sampling intervat,, and Poisson sampling, where thg form
4) Queueing delays the time spent by a packet in queuesa Poisson Process (described below). When we apply periodic
which depends on load, and can potentially be quitampling, we shall equivalently use the temmiformsampling
large, e.g., 0.2 seconds, even on single OCA48 line cartts.be consistent with the related signal-processing literature.
The two components that are significant, and therefore ofWe wish to estimate some parameterof the stochas-
primary interest in most modern networks, are propagatitic process X(¢), and so construct an estimateé =
delay and queueing delay. Propagation delay is determingdXy, X;,..., Xy). We shall measure the accuracy of this
by network topology and routing, and for the purpose of thisstimate by the Mean Squared Error (MSE)[(s — s)?].
paper we shall consider it to be a constant (see [18] forStandard arguments show us that we can decompose this error
more realistic view), which is derivable from other networknto a variance term, and a bias term, i.&[(s —s)?] =
data (topology and routing information), or from long-ternvar (3) + (E[3] — s)°, where the variance of the estimator
measurements of the network. The queueing delays may\ag (5) is of prime interest here, as we shall consider unbiased
seen as drawn from a random process, and one goal of #éimators, i.e., estimators for which the bi&s] — s = 0, at
paper is to estimate the behaviour of this process. least asymptotically as the number of measuremants co.

In addition to statistical variations in queueing delays, therr instance, the sample mean defined by
are measurement errors. Any set of performance measurements
contains errors and artifacts such as delays in time-stamping . 1Y
a packet once it is received at a monitor. In a well designed XN = N ZX“ ®)
measurement system they should be an order of magnitude =t
smaller than the queueing variations, and so we shall ristan unbiased estimate of the true mean of the stochastic
consider these in detail here. processXi, Xs, ..., Xy given that this process is stationary
This paper focusses on network performance measuremeatys] ergodic (where ergodicity is a technical condition we
but the analysis in this paper could equally be applied &hall not discuss in detail here, but it ensures that a time
measurements of server performance. In principle, any systaxerage such as the sample mean above will converge to the

that can be modelled as a queueing system is susceptiblérte mean of the process). The varianceX§ depends on

this type of analysis. the autocovariance of the sampled measurem&ntéve will
o _ consider this in more detail below).
B. Statistical Notation It is simple to show that{y may not converge to the

We shall denote a continuous-time stochastic process tmgan of a non-stationary process, for instance, consider the
X (t). We denote the mean of the process at tirog E[X ()] processX(t) = a(t) + cos(t) where a(t) is a stationary
(where E[-] denotes the expectation, or average), its varianogean-zero process. If sampled at time poifits= 2nr, then
by Var(X(t)), and its autocovariance by Co¥ (t), X (t+s)). FE[X,] = 1, whereas the average valug[X (t)] = 0. This
We will be concerned with wide-sense stationary processaighlights the property alluded to earlier, namely that uniform
where the mean, variance and auto-covariance are all constarhpling, when precisely synchronized with a periodicity in
with respect tat, and can consequently be writtéf{X (¢)] = the observed process may result in biased estimates. Should
px, Var(X(t)) = 0%, and Co¥X(t),X(t + s)) = Rx(s), we worry about such a synchronization happening in reality?
respectively, where we refer toas thelag. We also define the Certainly periodic behaviour can happen in networks, but what
AutoCorrelation Function (ACF) of the process by (s) = are the chances that we inadvertently synchronize exactly to
Rx(s)/o%. Note that the term ACF is used (in some texts€hese phenomena? The problem is that active probes are just
to denoteWWx (s) = E[X(¢t)X (¢t + s)], but we shall refer to that — active. It is possible that they stimulate activity at
this as the Mean Zero AutoCovariance Function (MZACF), guecisely the frequency at which they arrive, thus causing the
it is equivalent to the autocovariandegy (s) for a mean zero network to synchronize around these probes.
process. In general the relationship is There are two methods typically used to avoid such prob-

_ 2 _ 2 2 lems. Firstly, in signal processing, one passes a signal to be
Wx(s) = RX(S)_ * Hx = U)fr)_((s) T Hx . @) measured through a low-pass filter with cut-off threshgld

Another u_seful notation is an indicator function of thgpg then samples (uniformly) with sample frequerfigy> 27...

process, for instance We shall discuss the reasoning behind this, and in particular
[(X(t) € B) = { 1, if X(t) € B, @ the problem of aliasing (of which the above is a special case)
0, otherwise. in Section IV, but note that prefiltering of the signal is not
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possible for the active probing methodology discussed abowe.the discrete case it is only true as the number of samples

The second method for avoiding the problem is to randomig@es to infinity, but for finiteV we can take the approximation

the sampling intervals such that the epo@hsform a Poisson

process, which is described below. Px (k) ~
Note that a large part of this paper is applicable to other 2N +1 n

sampling processe€g,. This is important because

1 N _
Z Wy (tsn)efﬂfrkn/N7 (8)
=—N

and obviously we can determifi€x via the inverse transform.

« Even in uniform sampling there is often some jitter in th&or both deterministic and stochastic signals we refer to the
measurements (it is difficult to ensure probe packets aggm atf = 0 as the DC term.
sent at precise intervals).

« Where Poisson sampling is used, there is some miNiMyM the poisson Sampling Process

time between packet probes (at least because of the finit he Poi p PP is th | f db
size of packets), and this means that no probe stream i e Poisson Process (PP) is the renewal process formed by

i
: taﬁing Independent, Identically Distributed (lID) exponential
erfectly Poisson. ’
P Y Random Variables (RVs]S;}:2,, and forming timesrl,, =

2) Frequency Domain propertiedNe often wish to analyse s~ 5. Formally, the PP is defined by the process that counts
a set of data to discover if it has periodic components. Suffe number of renewals up to tintei.e.,

analysis is most easily accomplished in the frequency domain. -
A typical approach to obtaining such information is using the N(t) = ZI(T <) 9)
Fourier Transform (FT), defined here with its inverse for a = " ’

functi
unction g(t) by where(-) is an indicator function.

. o0 , The inter-renewal times$; have an exponential distribution
FTg(f):/ g(t)e ™" dt, g(t):/ FTy(f)e® ™" df,  pls; < s} = 1—exp(—As) wherep = 1/ is the mean inter-
> - (4) renewal time, and for the homogeneous RRs a constant
or for uniformly-sampled discrete-time data, we use the Di§alled therate. The mean of the PP is given biy[N (¢)] = At,

oo

crete Fourier Transform (DFT) and its autocovariance function is given [19] by
As, ift>s
N-1 ‘ N-1 A Ry(t,s) = { T ’ (10)
—i2rkn 1 i2mkn NAb
FTx(k)= 3 Xpe™®%, X, =< 3 FTx(k)e . A, it <s.
N . . . . .
n=0 n=0 Given the PP is clearly non-stationary we are not primarily

. . . . ®) interested in it, but rather in samples taken at the epochs of this
To detect sinusoidal signals, we often plot the perlodogr%:ffcess We shall define a new process, namelyPtisson

(th(.)UQh not_e there are many_var_lanons on this method, oned mpling ProceséPSP) as the derivative of the PP, i.e.,
which we discuss below), which is proportional to the square

i i i [ > dN
magnitude of the FT, for instance in the discrete case S(t) = Z‘W Ty = = (11)
2 =0

Px (k) = %|FTX(/%)|2 = % (6) whered(t) is the Dirac Delta function. Expectation is a linear

operator, and so

N-1

§ X e—iZwkn/N
n

n=0

It is common to report the discrete spectra in terms of the  fyg(y)] — E[dN} _dE[N@®)] _ i(/\t) _
index k, which we can convert to a frequency by takifig= dt dt dt ’

k/(tsN) for uniformly-sampled time series. The more datgng we can likewise derive the autocovarianceSgt) us-

we have the finer the frequency resolution, while the fastg{y the double derivative E[S(t)S(s)] = B[4 N]

the sampling rate (smaller) the wider a frequency band we 0 0 prn (1) N (s)], resulting in Rs(t,s) = AJ(t — s). No?e

. . . - @t Os ! )
can study (Section IV-A provides more detail of the NyQuishat the sampling process(t) is stationary, and so we write
frequency, which specifies the frequency band we can studyle aytocovariance, and ACF as a function only of the lag

the that o'ften frequ'enci.es are reported using= 27 f in,, _; _ s, e.9.,
umtg of radians per.tlme interval. . rs(u) = 6(u). (12)
Given a stochastic process(t¢), we typically talk about o o
the spectral densityather than periodogram. Loosely, it gives'n€ delta function is (by definition) zero for non-zero lags
the expected periodogram, though its actual values for a givenand so the PSP is uncorrelated in time. Another way of
random signal would be random variables. We shall abugting this is to note that the PP has independent increments,
notation here and us® to indicate the spectral density. An feature sometimes used in alternative definitions. This lack
important result in this context is the Wiener-Khintchine (WKf correlation of the sampling process results in the key
theorem, which relates the spectral densityita (s), by the Properties of interest here. Namely, that the number of samples
Fourier transform, i.e., in the continuous case, to occur in non-overlapping time intervals will be independent
random variables. Hence, given information about the past of
the process, we gain no information about its future — it is

_ >~ —i27 ft
Px(f) = /ﬂo Wx(t)e dt. (7) impossible to anticipate the samples.
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It is also simple to derive the fact that the number of samplesThe argument above relies on arrivals being Poisson, but it is
to occur in any arbitrary intervek,t + s] will be a discrete important to note that the Arrivals See Time Averages (ASTA)
Poisson random variable, with mean, and the events in the property applies for other arrival processes [20], [21]. The key
interval will be uniformly distributed over that interval. detail is the lack of anticipation. For instance, note that none of

1) PSP in the Frequency Domainle can also representthe above requires stationarity of the proc&ss). If it is, and
a PSP in the frequency domain through the WK theorethe increments of the sampling proceSgt + s) — N (t) are

(7). Note that for the Poisson sampling procéss(u) = independent of the state of the procésg), then E[Ug(t)] =
o2rs(u) + p% = M(u) + A2. We can easily take the FT of E[Uz(0)], and we can write
this function to obtain spectral density 1
(k+ 1)t kt
=0
The (almost) flat nature of the spectral density is often referred ~ FE[Ug(0)] E[N(t)], (16)

o as white .'Wh|te noise refgrs to a process whose SpeCtE\"’Hd once again we can prove ASTA. Note that here the arrival
density contains equal power in all bands (the metaphor ref%rs

T . . - ocessN(t) is no longer necessarily Poisson, however the
to white light despite this not containing an equal spectr f (*) 9 y

. . . ack of anticipation property must still hold, and so we cannot
content). The PSP is perhaps the simptestiplingprocess to use this result for an arbitrary arrival process. The lack of

ha\2/e gxss_?rp_ﬁ:ty ; Its f the fact that th anticipation requires the system does not try (deliberately, or
) - 'NIS property Tesults from the fact that the {ough accidental synchronization) to anticipate the samples.

system cannot anticipate the number of arrivals in a PSP.I fact the Weak Lack of Anticipation (WLA) property [21]

seems instructive to consider the why this leads to PASTr quires only thatV (¢ + s) — N(#) andU(t) be uncorrelated

and so we shall present a sketch of the key results here . ; "
. L 0P 0 < s < 50 for som long with technical condition
particular to see the limitations of PASTA. a0 < 5 < s for somes, (along with technical conditions

) o . th tinuity of the functi . The WLA ty ist
Formally, we define an indicator functioWpz(t) = on the continuity of the functions). The property 15 true

4 in many systems, but it is dangerous to assume so without
I.(X(t) N B.) for measurable sel, and thgn we define the any evidence. A simple example where WLA does not apply
time spent in staté3, and the number of arrivals that see sta

B over interval[0, 1) by & where the system and measurements are synchronized in
’ some way, but WLA is always true for Poisson samples. Hence
t N(t) Poisson sampling is considered to be safer.
V(t) = / Up(u) du,  Z(t) = Z Up(T3), (14) The above proof sketch is instructive because it shows that
/0 i=1 the ASTA property applies to point estimates of properties of
respectively, whereV (¢) is the PP defined above. Althoughtl® system. ASTA doesot apply where we have a property

technical conditions such as left-continuity of sample pat/i@@t depends on the process at more than one point in time,
are required, the PASTA theorem intuitively comes from orsdich as the spectral density, or delay variation of the process.

result: Z(t) can be written as a Riemann-Stieltjes integral, anet/Ch measures are derived for multiple time points in the
this integral can then be approximated by finite sums system, bringing the system correlations into the estimates.
3) Other properties of the PPThe inter-sample times of

/t Us(u) dN (u) the PSPS;, take an exponential distribution and therefore the
0 B PSP is easy to generate by generating $hebut we could

n—1 (k+ 1)t Lt also generate a PSP by exploiting the fact that the number
> Us(kt/n) [N < > - N ( )} , (15)
k=0

Z(t)

1

of events to occur in any arbitrary intervgl ¢t + s] will be

a discrete Poisson random variable (with meaf) and the

for sufficiently large n. For any arrival process whichevents in the interval will be uniformly distributed over that
cannot be anticipated the number of arrivals in interviiterval. Also note that the sum of two PPs also forms a PP,

[kt/n, (k + 1)t/n) is independent of the state of the systerdS does a PP which is thinned by randomly removing points

at timet, and so with probability p.
The time betweem samples will be the sum af expo-

n—1 . . . . . . . . .
E[Z()] ~ Z U (kt/n)] E{N ((k + 1)t) Y (ktﬂ nential distributions, which is given by an Erlangdistribu-
k=0

n

n n tion [19], with density function

. . . n n—1,—\s
Now, in the case of Poisson samples, the number of arrivals p {Z& € s, + ds)} _ A(As)" e ds 17)

in time [kt/n, (k + 1)t/n) is At/n, and so we can write — (n—1)!

;! t This property is important in this context because the Erlang-
BlZ(t)] = A~ Y ElUs(kt/n)] ~ /\/ E[Up(u)] du,  distribution approaches a Normal distributiof(n/, n/\2)
k=0 0 for largen. As n becomes large, we could consider the Erlang
for sufficiently largen (a real proof requires use of dominatedimes to be uniformly spaced with some small random jitter.
convergence theorems to deal with the limit @as— oo). Hence, while at one level the PSP is completely random, if
It is then a technical matter to show that convergence wfke take everynth probe, and only use this data, it is close

E[Z(t)]/E[N(t)] to E[V(t)]/t occurs ag — oo [20], [21]. to uniform sampling with probes spacedrat) intervals. So
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periodic subsamples from a PSP can approximate uniformThe PASTA property [22] ensures th#[X ()] = E[X,],
sampling, and hence there may be less difference betwestnleast in a limiting sense. However PASTA says nothing
Poisson and uniform sampling than is commonly assumedabout the rate of convergence, and it is intuitive that the
variance would increase with Poisson sampling, given we are
D. Related Work adding variability to our measurement process, but we show
. . this is not necessarily true below.
The PASTA result [20]-23] is well known in the com- Take stationary stochastic proce¥$t) and further simplify

mumﬁathns .netwforklnbg comrr?umty, ?(S are éhglproblems g/ithout loss of generality) by shifting the process so that it
sync rom;aﬂon O probes W'.t networ Perio |C|F|es (eg. S€% mean zero, and the variance of the sample mean
[6], [7]) with a result that Poisson sampling is discussed in a

number of IETF RFCs [3]-[5], [24], [25]. A ) 1 X 2
However, there has been little work on the topic since these Var (XN) = E{XJQV} = E (N ZX(Ti)>
foundations. One recent paper [26] starts to consider the issue. i=1
The paper uses a large number of experiments to consider 1 XX
whether the use of Poisson sampling makes any difference in = ¥ Z Z E[X(T)X(T})]. (18)
practice. The conclusions are largely negative, i.e., they found i=1j=1
little evidence for differences between Poisson and uniforplence the variance of the estimator depends on correlations
samples of delays, losses, or packet-pair dispersion. There g&gyeen samples. For uniform samples-T, = t,(j—i), and
intrinsic difficulties to such a study primarily because we cafence for a mean zero proces8X (T;) X (T;)] = Rx (ts(j —
only compare the difference between the two, not how accurai®  For Poisson samples the timég — 7T; are Erlang-
they are with respect to the underlying process. Further, expgj-— ;) random variables, and so the expectation is given by
iments cannot prove a negative — they cannot show that th@r@ropability integral over the autocovariance. It is commonly
is never a problem with network and probe synchronizatiogssumed when making measurements that correlations drop
An additional paper [23] considers the difficulties of invertingy zero if we space the measurements sufficiently apart, and
measurements based on Poisson samples. so we need not include these terms in our calculations of
This paper will draw on the work contained in [8], inyariance. However, in the Internet, the correlations may extend
particular, methods for estimating the accuracy of measurggther than we can naturally space measurements [8], and
network performance metrics. There are also a number fjfthermore, when performing Poisson sampling, the intervals
works on irregular sampling in other contexts. We disCugsatween probes are random, and so some intervals may be

these in more detail in Section IV below. very short. Hence, we must take account of the correlations
in the system under observation.
I1l. ACCURACY AND EFFICIENCY The formula above is computable, but more instructive

We wish to measure properties of a stochastic procd§sults regarding the above variance can be derived in the limit
describing the network behaviour, and so it is natural to agg N — oc. Limiting formula have been derived in the form
how accurately we can do so. Note that this is not accuracy@sCentral Limit Theorems. For uniform samples, the standard
specified in the relevant RFCs, where it means the accurdbgorem states that
of the dgwces used for measurement. Here we mean accuracy VN (XN _ X’) 0 N(0, 5%), (19)
with which we can determine the parameters of a (wide-
sense) stationary stochastic process (the observed delays\hére N (0, 52) denotes a normal distribution with zero mean,
is valid to measure a non-stationary process, for instanggd variances?, and s% is referred to (see [28]) as the

to perform change detection for the purpose of detectingymptotic variancef the processy, and it is defined by
anomalies, however, when doing so, the concept of accuracy

of the measurements has less meaning. s% = Jim N Var (XN) : (20)
Given we shall typically apply unbiased estimators, the o _ _

variance of the estimator is equal to the MSE. Variance Y¥& may compute the asymptotic variance for uniform samples

usually monotonically decreasing with the number of prob&Sing the following relationship (from [29]),

N, and so an alternative way of describing the problem is using o0

statistical efficiency, which describes how efficiently each Seniform = TX (1 +2 ZTX(TL ts)> ) (21)

data point is used in estimating parameters. More precisely, n=1

statistical efficiency is the minimum possible variance for anheret, is the time between the samples, and the sum is finite

unbiased estimator divided by its actual variance. In gener@onvergence of the sum is not guaranteed, with alternative

this depends on the particular parameter to be estimated, aslilts in that case).

the estimator used. We shall focus on a simple parametei similar theorem for Poisson samples is derived in [8]

(the average delay), and use a simple statistic to estimate this oo

parameter (the sample mean). This is not necessarily the best 8 oisson = 0% (1 +2A / rx (u) du,) , (22)

linear estimate of the mean of the data, but it is known to have 0

high relative efficiency ¥ 98%) compared to the best linearwhen the integral is finite. Note that if we take= 1/t, then

estimate (which is unknowa priori) [27]. the average rate of probes for both methods is the same. Given
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ts — 0, then £ > rx(nts) — f0°° rx(u)du, so the two ~ We do not have a closed form for the discrete sum (21),

methods are consistent for high sampling rates. but it can be computed numerically by summing over the
The main result is that for certain types of autocovariancabove autocorrelation, which we can evaluate using numerical

either Poisson or uniform sampling could be superior. Fartegration. Alternatively, we can apply the approximation

instance, where the autocovariance has oscillatory behavigiven in [33, (3.7)], i.e.,

we could construct a function such that the sum averat

1

regular points is either greater or smaller than the integral over rqQ(s) ~ 3 [e"‘”s‘ + e’B|5‘} )
the whole autocovariance function. Given that either case\ihere (25)
possible, what is likely? We shall consider this in the case of A (1—p)? (1—p)?
a simple queueing model, the M/M/1 model. T 1o+ 75 “1i, 5
A. Accuracy of measurements of a simple queueing modeiThis form can be analytically integrated to give

One of the simplest queueing systems is the M/M/1 queue, * ds ~ 2(1+p) 26
i.e., a queue with a Poisson arrival process (Pgtef packets 0 rq(s) ds = 2(1 —p)2’ (26)
whose service times are exponential (with méan). We shalll and summed to give
initially use this queue to model the effect of the two sampling 9
regimes, because of its simplicity and the fact that G 1 e—Ats e—Bts

: ; Z rn(nts) ~ 5 + @7)
o The sum of two PPs is also a PP, and we can simply 911 = e¢—At. " 1] _ ¢—Bta

n=1

model a system including Poisson probe traffic by adding . _ _
the rate of probe traffic to data traffic with the result still Figure 1 shows a comparison of the asymptotic variances

having Poisson arrivals. for Poisson and uniform sampling. The figures show both
« The output of a M/M/1 queue is also Poisson, allowinghe approximation (lines), and the exact numerical results
us to obtain results for concatenated queues. (markers). Figure 1 (a) shows the impact of varying the

We denote the traffic intensify = A/p. The queue is stable Sampling interval. The figure shows that Poisson sampling
with a finite average buffer length for < 1 and we restrict has a higher asymptotic variance, which should be expected
our attention to this region. The M/M/1 queue is well studiedor & monotonically decreasing ACF. Note also that the figure
with many text book results, e.g., see [30]. For instance, tR8€MS to indicate that the two asymptotic variances converge

mean and variance of the number of packets in the system fets — 0 as we would expect. Figure 1 (a) shows the results
for a moderate loagh = 0.75, but the results above show a

re = ElQ] = 1%7 op = Var(Q) = ﬁ dependence op, which we explore in Figures 1 (b) and (c),
. P . . P by showing (for a fixed sample rate) the results for a range
The mean and variance of the waiting times are of values ofp. For t;, = 100, we note significant variation
_ 1 _ 1 2 between the two asymptotic variances, but that the differences
EW] = U BlQ], var(w) = u? (e +q) - decrease for heavy and light loads.
The M/M/1 auto-covariance results are not as simple, becausélowever, the most interesting thing to note from Fig-
of their dependence on the transient behaviour of the M/Mires 1 (b) and (c) is the dramatic dependence of the asymptotic
queue. We can find the auto-covariance of this queue in [3¥Rriance on the system load As noted in [8], the total traffic

[32]. The autocorrelation function is given by rate has a very significant impact on measurement accuracy.
e —wls| This was argued in [8] to be a much more general effect
ro(s) = u/ sin? oeigda (23) than we have demonstrated here (for the M/M/1 queue). It

™ 0 w

is important here because it shows that therenisch more
wherew = X\ + u — 2¢/Aucosf. This is not quite the same variation in measurement accuracy between measurements
as the auto-correlation of the delays, but it is close enoughtaken at different loads, than we might see using different
give us the required insight for this paper, whereas the formwdampling methodologies. The variations for different sampling
for waiting times are considerably more complicated, withoumethods should be seen as a minor effect in comparison.
providing any additional insight. Morse [31] gives the integral Figure 1 also shows that for large sampling rates the
of the ACFrg(s) overs as does [28, (22)], but note the timeasymptotic variance increases. This results from the fact that
scaling of1/u in [28]. Given such a scaling, the observatiothe samples are more closely spaced, and so they are more
time is measured in units of number of (average) service timesrrelated, and less additional information is added per sample.
Given this integral we can analytically compute the asymptotic
variance for Poisson sampled measurements of the numbeBof

packets in the system, and this is closely approximated by . . . . ) o
0 3 One issue that arises in using Poisson sampling is that fact

SQB(p’ A, 1) ~ P S +p 4p < (24) thaf[ the time tgken tq obtair) a fi)fed pumdafr of samples
(1-p) (L-p) varies. Alternatively, given a fixed time interval the number
where we note that the Poisson samples compose proportiénsamples will be random. The results above tell us the
p of the traffic sent to the queue, so that= p)\, whereX is asymptotic variance for a fixed number of samples. We should
the total arrival rate of packets to the system. also consider the case of a fixed time interval.

Fixed time-interval sampling
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average inter-sample time (measured in service times) traffic intensity p traffic intensity p
(a) Asymptotic variance fop = 0.75 and a (b) Asymptotic variance for range of traffic (c) Asymptotic variance for range of traffic
range of sampling rates. intensitiesp with ¢; = 100. intensitiesp with ¢t = 1.

Fig. 1. Asymptotic variance for Poisson and uniform sampling of the M/M/1 queue. The lines show results derived from approximations (26) and (27),
whereas the markers show results derived from direct numerical integration. Note time is given in units of average service times.

Given a fixed time interval, the number of samplés will C. Impact of active probes

be distributed as a Poisson random variable, i.e., The results above neglect the impact of the active probes

(AT)™ exp(—AT) (28) themselves (results are reported for traffic intensities, irre-
n! ’ spective of what proportion of this traffic is probe traffic,
which has meam\T and variance\T'. For large values of Or genuine data traffic). The work of [8] showed that the
AT we may approximateVy by a normal distribution, i.e., impact of active probes themselves was substantial (in that
Np ~ N (AT, AT). The variance ofV is an additional source it increased load, and therefore correlation scale, and hence
of variance in the results. the asymptotic variance). We will not repeat this discussion
To analyze this, let us consider the simple case of uncorfiere, due to limitations in space.
lated measurements. In this case the sample mean, condition&lowever, there is one respect in which this work differs
on Ny is has variancer% /N, for Ny > 0. Note that for from [8]. When Poisson probes are combined with Poisson
true Poisson sampling there is a non-negligible chance of zéfaffic, the resulting input traffic is still Poisson. However,
samples occurring, so we condition on at least one samp{@)en uniform probes are combined with Poisson traffic, the

P{NT:’II}:

resulting in a distribution result now deviates from Poisson, which will distort the
n _ behaviour of the queue. This type of effect should be minor
P{Np =n} = (AT)" exp(-AT) (29) for low sampling rates.

(1 — exp(=AT))n!’

Take expectation over the conditional variance, and use tBe

notation X+ to denote the sample mean of Poisson samples
over a fixed time interval, we can see that No-one would claim that the M/M/1 qgueue is a gOOd
) A AT (AT model for Internet performance. A more realistic model would

var (XT) — E{Var (XNT)} =02 > include features such as Long-Range Dependence (LRD). As

(1—e?T) = n.n! noted in [8], LRD changes the quantitative results described

Figure 2 shows the relative variance of the sample mean ffpove, but qualitatively similar phenomena are observed. See

ID RVs generated by uniform versus Poisson samples, IBS] for some informative simulgtions. Mos't im'portantlly, where
the figure shows V: (%, /Var Xu ), whereN = AT. The we have LRD, the autocovariance function is not integrable,

and so the CLT used above in (21) and (22) will not hold. In
act we need to use a generalized CLT, which will result in
Uch slower rates of convergence.

Long-range dependence

figures shows that for smalT', the variance in the Poisson
samples increases the variance of the estimator by up to 3
but that this increase quickly becomes negligible. After only
around 50 samples\{" = 50), the loss in efficiency of the
two becomes around 2%, and given the number of samples IV. TIME-SERIES PROPERTIES
collected in many experiments, this can be considered to be aMany time-series algorithms are designed with uniformly-
negligible source of error. sampled data in mind. For instance, a problem of interest in the
The drop below 100% fonT = 1 arises because in thisInternet is the detection of synchronization effects. These have
case, uniform sampling results in exactly one sample, but foad an impact of sampling methods, but moreover, synchro-
Poisson samples we must condition on at least one sampieed oscillations often result in reductions in performance. A
being made otherwise we cannot estimate the delay at athse in point is TCP congestion-control synchronization [6],
Hence there is a notional advantage to Poisson sampling ot it has been noted in other contexts such as routing [7].
low AT, but it arises due to the conditioning, and so shouldowever, there are few papers concerning detection of such
not be given much weight. oscillations in practice (for one example see [34]), perhaps in
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140 ‘ ‘ ‘ ‘ the periodogram time-shift invariant and defined by

SOV sin(2wTy)
tan(2wt) = 1’1[1—
> g cos(2wTy)

The LSP P)((LS) gives us information about the frequency
content of the signal at frequency There are several methods
for deriving, or justifying the LSP. For instance, as a peri-
odogram that guarantees a flat spectral density when applied
to irregularly sampled white noise [36], or which results from
performing a least-squares fit of sinusoids to the irregularly
sampled data (the standard periodogram can be thought of in
70 : : : : the same way for regularly sampled data) [35]. The statistics

0 20 40 60 80 100 . X
AT of the LSP are known, and so we can determine simple

Fig. 2. The relative variance of the sample mean for IID random variabIg@/pc’thes_IS tQStS for the presgnce, or absence of particular
generated by uniform versus Poisson samples. frequencies in the measured signal.
As describe above the algorithm is not particularly efficient.
However, fastO(N log N) algorithms for the computations of

part because detection of such frequency components usig LSP exist [37], [38], much as the Fast Fourier Transform
irregularly sampled data seemed to be a hard problem. THR¥sts for the DFT.
paper demonstrates that this should not be a major issue, i.eThough it has been explicitly applied to Poisson sampled
that we can detect periodic components of signals even whél@ta [39], the LSP is not just applicable to Poisson sampled
the data is irregularly sampled. data. For instance, passive sampling of packet delays will also

The problem of detection of periodic components of unlesult in an irregularly-sampled times series, because sample
formly sampled data has been extensively studied. There Hraes can't be controlled, and we could apply the LSP here.
a number of approaches, but the simplest (conceptually) is tdn this paper we shall again use the M/M/1 queue as an
take the Discrete Fourier Transform (DFT), and examine ti§&ample. In particular, consider the ACF of the M/M/1 queue,
corresponding periodogram for peaks that would correspofityen in (23). The WK theorem (7) allows us to compute
to a periodic signal. There are a number of issues relatedtf@ spectra of the M/M/1 queue from this relationship by
this method, many of which we shall omit in this paper (e.gtaking the FT ofi5(s). To gain some insight into the shape
those concerning numerical properties of the periodograrf.the spectra, we can use the FT of approximation (25) to
However, there is one critical issue, that of the Nyquignalytically derive an approximation for the spectra
frequency, which we shall discuss further in Section IV-A. A B

One method to apply time-series algorithms to Poisson data FT{rq(t)} ~ A2 T 422 T B oyl (30)
would be to re-sample the data onto a uniform grid througlhh . , ) ,
interpolation, but in doing so we run the risk of introduc. e discrete spectra turn out to be a little different. Taking the
ing unknown interpolation artifacts. However, in fields sucRFT of rw (nt;) we get two terms of the form
as astronomy where irregularly observations are unavoidable ~
considerable work has been devoted to analysis of such time Z e
series. In particular, we can determine periodicities present in n=—nN

=
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such data using the Lomb-Scargle Periodogram (LSP). This is N ‘ N A
a natural generalization of the standard periodogram defined = 1+ Z e Al gTInw Z e~ nAts ginw
in (6). It can be seen as analogous if we expand the complex n=0 n=0
exponential in the periodogram (6) in= 2x f to give N an X An
_ —(Ats—iw) —(Ats+iw)
N . , = 1+) (e ) +y (e )
1 n=0 n=0

Px(w) = N (Z X cos(wTk)> + (Z Xk sin(wTk)> . o— (At —iw) o— (At —iw)

k=1 k=1 — 14+ 1= o (AL i) + | o—(Attia)’ (31)
The LSP [35]-[37] is instead defined by in the limit as N — oo. In addition to this term, we add a

N _ 2 similar one withA replaced byB, and the mean queue results
PES) () = 1 (Zk:l(X(T’“) — X)) cos(w(Ti — T))) in an additionalu? (k) term.
x Wy SN cos2(w(Ty — 7)) Figure 3 shows the standard and LSPs for uniform and

Poisson sampling of a simulated M/M/1 queueing process

N S\ 2 with ¢, = 100 unit service times,p = 0.95, and N =
X(Ty) — X Ty — N . - ! - .
(Zk:l( (Ti) ) sin(w (T T))) 100,000 arrivals (note the first 5000 are discarded to avoid
S sin?(w(Ty — 7))

transients). The total number of samples is therefore near 1000
wherer is a frequency-dependent time shift included to make illustrate the spectrum more clearly. Cases with low load

)

in each case. We deliberately choose a high-load example
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Poisson Poisson Poisson

40

theory theory theory
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freque_ncy (cycles ;?e? 1000 servwie time)
(a) Standard Periodogram. (b) LSP (c) LSP of M/M/1 plus a cosine.

Fig. 3. Periodograms of the M/M/1 queue with= 0.95 to show a wider-band spectrum. In each figure the top plot shows the periodogram using uniform

sampling, the middle shows Poisson sampling, and the lower plot shows the theoretical spectral density of the queueing process. The Nyquist frequency is

shown by vertical dashed lines. In plot (c) an additional cosine with frequgney1.5/(2 E[ts]) is added, illustrating aliasing for uniform sampling. The
signal can be unambiguously detected using the LSP and Poisson sampling (see circles) even though it lies above the Nyquist frequency.

= 0.0 5 - 0.0 5
frequency (cycles per 1000 service time) frequency (cycles per 1000 service time)

are qualitatively similar, though the periodograms beconte see in the frequency domain — periodic repetitions of the
flatter (apart from the delta gt = 0) as the strength of the spectra of the process at intervals of the Nyquist band.
correlations is reduced. The figure also shows the theoreticaln fact, the bias introduced when we uniformly sample a
spectral density as described above. system synchronized with its periodicities is a special case of
Figure 3 (a) shows the periodogram for uniform samplingliasing. Frequency = n/t, is aliased to the DC term in the
(top plot), which matches what we would expect from the thapectrum, hence distorting the estimate of the mean.
oretical spectral density (bottom plot) within the Nyquist band In order to ensure that aliasing not occur, signals are often
(vertical dashed lines), but thereafter repeats periodically dfigered prior to sampling, typically with a low-pass analogue
to aliasing (see below). Surprisingly, the standard periodogrditter with cut-off below the Nyquist frequency. Given such
for Poisson sampling (middle plot) also appears to match tfikering, we can unambiguously detect periodic components
true spectral density within the Nyquist band. We will discussf the signal, but not over an arbitrary range — signals above
this in Section IV-B, but note that it is not a generic propertthe cut-off are effectively removed from the signal, and so
for Poisson sampling, but one peculiar to the M/M/1 queueare invisible. However, there are a number of applications
Figure 3 (b) shows the LSPs for uniform and Poissomhere the sampling methodology makes pre-filtering the sig-
sampling. We will discuss these further in Section IV-A bubal inherently hard. As in many astronomical observations,
note that the LSP for Poisson sampling (middle plot) differisiternet measurement samples are obtained by experiments,
noticeably from the theoretical spectral density. The masnd we have no opportunity to low-pass these samples prior
difference is that the noise floor for the LSP is around zeto performing the experiments. This results in a problem for
dB, masking the true spectrum of the process for frequenciesernet measurements. How can we prevent aliasing?
greater than 1 cycle per 1000 service times. On the other handis it turns out, irregular sampling has its key benefit here.
it avoids the aliasing effects seen in the other plots. It has been shown [40] that the analogue of the Nyquist
frequency is considerably higher for irregularly sampled data
than for uniformly sampled data. The naive intuition is that the
increased Nyquist frequency arises because with irregular sam-
When data is uniformly sampled at frequengy (that is, pling, some samples will be closer together than the average
the samples are separated by times= 1/f;), we lose data sampling distance, thereby removing ambiguity. However, it is
(concerning the signal between samples), and this in turn magt true that the new Nyquist frequencylig2 min(7; 1 —T15).
lead to an ambiguity. Signals with different frequencies madp fact [40] shows considerably higher frequencies may be
result in identical samples, e.g., Figure 4 shows an exampésolved (it uses 122 data points of astronomical data, and
of two sinusoids which could generate the same set of samplecessfully finds periodic behaviour with frequency of the
data points (shown in the figure as circles). This problem @der of a 100 times the uniform sampling Nyquist limit).
generally referred to as aliasing. Aliasing can be avoided if theFigure 3 (b) illustrates this property. Note that when Poisson
highest frequency present in the signal has frequengy/2, sampling is used (middle plot), the aliasing of the central
the so called Nyquist frequency, with the result that a signpeak to higher frequencies is eliminated. Figure 3 (c) further
f(t) can unambiguously be reconstructed from its samplesilifistrates aliasing. In this case, we add a cosine wave with
sampled at twice the rate of the highest frequency presentfrequencyl.5x the uniform sampling Nyquist frequency to the
Figure 3 illustrates the problem of aliasing in our contextjueueing process before sampling. When uniform sampling
The top plots show the periodograms for uniform sampleis. used (top plot), we see multiple aliased peaks resulting
We can see that the central peak aroyne: 0 is aliased to from the cosine function. When Poisson sampling is applied
create to additional peaks outside the Nyquist band (shofmiddle plot), the two genuine peaks appear at the correct
by vertical dashed lines). This is what one typically expectsequency. The cosine has frequency outside the uniform sam-

A. Aliasing
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and standard statistical tests exist [39]. Hence, this approach
is quite viable should we wish to, for instance, detect network
, synchronization effects.

/ B. Autocorrelations

' The standard estimator of autocovariance for regularly sam-
pled data is well known. Obviously, given such samples we
Fig. 4. Aliasing in the time and frequency domains. The figure shows @0 NOt get access to the autocovariance of the continuous
sinusoids that generate the same set of sample points (circles). processX(t) from which we are sampling, but we can obtain
asymptotically unbiased estimates at lags that form integer
multiples of the sampling interval, using the estimator

pling Nyquist band, but can still be unambiguously detected | N=n
using the LSP. By (nt.) — — [X _ X } {X _ % } (35)
To correctly understand the result, we must correctly un- x(nts) N kz::l § N " N

derstand the impact of sampling in the Fourier domain, often .
referred to as thaindow functionWe may think of sampling a Where Xy is the sample mean of the process. _
continuous function as the process of multiplying this function This estimator is predicated on uniform sampling. Consider

by a sample process, i.e., its behaviour when Poisson sampling is applied. We shall do
- so for a mean-zero sampled procés&Tl},), in order to make
_ _ the analysis simple. For such a process denote our estimate
X)) =X(@)S(t) = X(t o(t — Tg)- 32 X
(Xn)(2) S () ( )k:z_:oo ( 2 (32) (not necessarily oftx) by
The FT of the product of two functions is the convolution of . 1=
the respective FTs, and so Q(n) = N Z X (L) X (Tosr), (36)
k=1
FT{(X,)} = FT{X(t)} » FT{S(t)}, (33)  then we can rearrange to find
where x denotes the convolution operation. In the case of . 1 Non
uniform sampling, E[Q(n)} = ¥ E[R(Ty1r — Tk)]
%) fo%e) k=1
FT 5(t—kty) p = teo(w—k/t)), (34 1= e
{ > a( )} D tad(w—k/t),  (34) - L / R($)P{Tpsp, — Tp = s}ds
k=—c0 k=—c0 N — Jo
which, when convolved with the true spectrum, results in rep- | Non oo A(\g)—1p—As
etitions of the spectrum at intervals bft,. These repetitions = ¥ / R(s)((s)l(; ds, (37)
0 n — !

=

do not overlap if the spectral density of the spectra is isolated -1

into a bandl/ts in width. Note also that the FT of a real iven thatT, . — T} is the sum ofn exponential RVs and
process is even, and so there is only half this band ava"aﬁlleerefore distributed as an ErlangRV. Note that the terms

for non-redundant information. _ . inside the summation do not depend lpnand so
On the other hand, the spectral density of the Poisson

sampling process is given in (13). We can see that it is E[Q(n)} _N-n [* (S))\(/\S)"‘le—“ ds. (38)
a constant, plus & DC term. Hence, when we convolve N Jy (n—1)!

with this spectral density, thé term results in the correct
spectra (without repetitions), while the constant results in ev

spreading of the spectral content of the signal across all ban% 'tl\ljlﬁltlerestmg t\;)vcor;sn(ljzr the t;:asle O_f Po;;sson sam_plmg of
albeit at a lower level than the signal of interest. Hence, tHige queue. We shall do so by placing the approximation

explanation provides an intuitive understanding of the origh? £(5): €9 (25),|forfth|<19 '\;'/Mll queue into (38), such that
of the noise in the LSP for the Poisson sampling cases.ff 9et two integrals of the form

Searly Q(n) may not be a good estimator &fx (nt).

also suggest that we can find periodic components of arbitrary N —n\ Aa? [ (As)" e~ (AtA)s
frequency in a signal (i.e., there is no Nyquist limit), but note ( N ) T/o (n—1)! ds
that this property only applies in the limit as the number of N —n\ o2 1

samples goes to infinity. However, even for finite samples we = ( N ) AT AN

can certainly detect frequencies well abavyet,. )

Figure 3 (b) shows the increase in background noise that N g—exp(—An/A), (39)
occurs in the LSP. Although methods exist to reduce this, 2
it is still an issue if we are attempting to characterize thfer large n and N. Hence we can see that for the M/M/1
spectral density of the process. On the other hand if we wigheue, the Poisson sampled ACF approaches the true ACF in
to detect the presence (or absence) of a limited numbertbé limit for a large number of samples, and large lags. See
sinusoids in the time series, then it is quite practical to do seigure 5 below to see how close the approximation is in a real
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theoretical ACF —— theoretical ACF

o time domain (uniform sampling) o IFFT (uniform sampling)
1 ¢ time domain (Poisson sampling) || 1 ¢ IFFT (Poisson sampling) |
LSP (Poisson sampling)
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lag (units of mean service time) lag (units of mean service time)
(a) Time domain estimates using the estimator (35). (b) Frequency domain estimates, obtained by taking the

periodogram and applying the inverse DFT.
Fig. 5. The estimated and theoretical ACF for= 0.95 andts; = 100. Vertical lines show 95th percentile confidence intervals.

case. In conjunction with the WK theorem (7), we can now seeFigure 5 shows ACF results for various approaches to
why the standard periodogram reported in Figure 3 (a) (midddstimation for a set of 30 simulated samples of the M/M/1
plot) gives almost correct results for Poisson sampling. Givepueue. The results use somewhat more samples (of the order
the ACF is estimated reasonably using Poisson sampling, @f10,000), as we might expect when trying to estimate higher-
should expect the spectra to be equally correct. order moments of a process. Figure 5 (a) shows time-domain
The results show two things. Firstly, PASTA as a result Bstimates based on uniform and Poisson samples, including
not necessarily true for higher-order statistics of a proce€ith percentile confidence intervals. We can see that over
This is important to realize when we consider measureméhe range plotted they are both reasonably close to the true
of statistics such as delay variation. In the M/M/1 case th&CF, though note that (as described above) this is not a
distortion is minimal, but could perhaps be larger for otheguaranteed property of Poisson samples, but rather a property
processes, though in general we might expect estimates tfoat arises when sampling the M/M/1 queue. Figure 5 (b)
very large lags to be reasonable, given higher-order Erlasigows frequency domain estimates derived by estimating the
distributions tend towards a deterministic distribution. periodogram, and inverting. Three techniques are displayed,
To obtain a true estimate of the ACF we could use interpthe first two being based on the standard periodogram of both
lation of our original data set, but as before interpolation magniform and Poisson samples to illustrate that these produce
introduce unknown artifacts. Alternatively, we might bin th@lmost identical results to their time domain equivalents. The
time differenceg; — ¢; and compute an approximation to thdast is based on a LSP, and shows that we could estimate the
autocovariance over such intervals. However, in this approad;F using Poisson sampling.
information is lost. A similar method (inverting spectra) can also be used to
On the other hand, the WK theorem, which relates the spdtgrive cross-correlations for two sets of measurements [39].
tral density toWx (s), gives a method for computing the ACF
by applying an inverse FT to the periodogram [39]. Starting- Delay Variation
from a LSP plotted with the standard range and resolutionDelay variation (as defined by the IETF [25]) is intended to
for uniform sampling, we obtain estimates at discrete lagapture a notion of the variability of delay measurements. A
Wx (nt,) (as we would with the time-domain estimator). Wepossible application is the adaptive design of playout buffers,
can plot a LSP at higher frequencies, and with finer resolutiovhich must buffer enough data so that even if some packets
than the standard periodogram, resulting in finer resolutiame delayed a steady stream of data can be provided to
when we produce the resulting ACF, however, note that tla@ application. RFC 3393 [25] specifies delay variation be
same information is represented in the periodogram, and measured by examining differences in delays, i.e., we consider
this represents a form of implicit interpolation [36]. the proces¥; = X;—X;_1. Such a process gives us some idea
There is one important detail to correct when applying thef the variation of the delays. The RFC describes a number
inverse FT. As noted above, the FT of the sampled data i®Buseful statistics of such measurements — we shall consider
convolution of the signal of interest with the FT of the windowits variance here, i.e., Vat;).
function. When we compute the periodogram, we take theln the case of uniform sampling, the interpretation of this
magnitude of this function, and the result is a distortion of thmetric is typically related to an application which sends traffic
spectra. The distortion is passed back to the time domain &ythe same intervals as we sample. However, it should be

the inverse DFT and so the measured ACF will be obvious from our discussion of correlations in queueing that
X X Var(Y;) depends on the sampling interval. In fact, we can
F(nts) = Px(nts)rg(nts), (40) derive the variance explicitly in terms of the autocovariance

wherer, is introduced by the sampling. This effect must bgf X(t). First note that for a stationary processt)

removed to obtairfx (nt;), by dividing through byrg(nt). ElY;] = E[X;] — E[X;—1] = 0. (41)
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Now, given E[Y;] =0 A. Sampling intervals
Var(y;) = E[Y-ig] _ E[(Xi B Xz;l)z] A common concern with ran.dom probes is that there may pe
5 ) large gaps between some adjacent probes, and that we might
= E[Xi —2Xi X+ Xi,l] miss a particular event, or that an opportunist might somehow
= 2F[X}] - 2E[X;X;_1]. (42) exploit these gaps. Uniform sampling has a maximum time

between probes;, and so provides guarantee of the maximum
Let us further simplify (without loss of generality) to considefjyration event that can escape notice. However the lack of
Xi to be mean zero, and we see that anticipation property that forms the basis of PASTA prevents
anyone from exploiting the gaps between measurements, as

2
Var (Y;) = 20y — 2 E[R(T; — T;-1)]. (43) they cannot tell in advance where these will be. Furthermore,
For uniform sampling this reduces to it is worth considering that the probability of an inter-probe
time 100 times the mean time for a PSP is less than'4.
Var (Y;) = 2[o% — R(ts)]. (44) Thus we will not observe such large gaps between probes.

In the case where the mean inter-probe times are already
So clearly, for uniform sampling, the delay variation dependgrge, then we may wish to limit the possible gaps a little more
on the sampling intervdl. It is therefore believed that to mea-stringently, and it may be appropriate to place a cap on the
sure a delay-variation of relevance to a particular applicatiofter-probe interval. ASTA will still apply as long as the lack of
that the measurements must be made at the same intervalgfipation property holds. A probe sequence with truncated

the application’s traffic. intervals will be more easily anticipated by an assailant, but is
For Poisson sampled measuremeklis= X (7;), and unlikely to result in synchronization, and so we may find this
oo solution suitable in some cases. Furthermore, the LSP does
E[R(T; —Ti—1)] = A/ R(s)e™*ds, (45) not depend on Poisson sampling.
0

Similar issues arise when we consider the fact that probe

resulting in different metrics for Poisson and uniform samplegackets have a minimum inter-probe times either because of

However, we can invert the LSP (with Poisson samplef)e probe generation mechanism, or the packet transmission
to derive an ACF for the delay measurements, and frofiine for the probe packets.
this, we could easily substitute values directly into (44) in
ordgr to obtaiq an estimate of the de!ay variatioq for a8 Component performance
arbitrary sampling interval (whereas uniform sampling will i i , ,
provide this only for a fixed sampling interval and integer Another point of importance is the fact that a network is

multiples thereof). Figure 6 shows a comparison of the diré@2lly made up of many queues. PASTA applies to a system

computation from uniform samples with estimates obtainét? @ Whole, and so a single queueing model such as used here
from inverting the LSP for Poisson samples obtained aboJ82y Work for modelling end-to-end measurements of delay
We can see that both provide a reasonable approximationtifough @ series of queues. However, the sample sequences of

the true delay variation, and that the direct and LSP approacifs@Pes at each link in the network will not be Poisson. They
are statistically indistinguishable. will be distorted by queueing with cross-traffic at previous

links. The PASTA property will therefore not hold at individual

components of an end-to-end path. Does this matter? Not
if we only consider end-to-end measurements. However, by
performing probes across a set of end-to-end paths, we can
form an inverse problem whose solution gives the performance

600

500r

% 200} of the network at individual components (for example, see
E [41] and the papers therein). PASTA will not hold for these
€ 300} individual components, and so there is an apparent reliance on
© the more general ASTA results.

2001 — theoretical

o direct (uniform sampling)
100 ‘ ‘ O LSP (Poisson sampling) C. Intractable measurements
0 200 | 0 (units of mean sovite time) . 1000 Some measurements are intrinsically hard to make using

Fig. 6. A comparison of the direct computation of delay variation fronl1:JOisson prObeS' For instance, reordering metrics are Critica”y
uniform samples and estimates obtained from inverting the LSP for Poissd@pendent on the spacing between probe packets. Packets far
samples for the M/M/1 queue with = 0.95, and ¢ = 100. Vertical lines  gpart in time are very unlikely to be reordered. We could
show 95% confidence intervals which overlap for both methods. model this via delays in multiple queues, and attempt to infer
reordering from Poisson samples, however, the estimate would
be highly dependent on how accurate a model was used.
Hence, for metrics such as this, uniform probing seems to
There are many other issues that impact the choice rmmfike more sense. On the other hand, the same affect noted
sampling used for performance measurements. above — the distortion of probes away from their ideal probe

V. OTHER ISSUES
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stream at downstream links — also applies to uniform samples] P. Barford and J. Sommers, “Comparison of probe-based and router-
Hence, if the reordering occurs late along a probe path, the
samples will not be uniformly spaced, and the reordering
metric will not measure the same thing as it would were thes] Y. zhang, N. Duffield, V. Paxson, and S. Shenker, “On the constancy
reordering happening early in the path. This seems to be a
difficulty in the notion of defining a reordering metric, rathef, g
than the sampling method used.

[20]

VI. CONCLUSION [21]

This paper has quantitatively compared differences b?
tween Poisson and uniform sampling for active performance
measurements, and more generally presented techniques[2&r F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot, “The Role of PASTA

understanding the properties of any sampling approach.

[24]

The key findings of the paper are:
« Poisson sampling results in a reduction in efficiency, aréf!

hence more Poisson probes would be required to provi
estimates of the same statistical accuracy. However, the
reduction in efficiency is dwarfed by the natural variation
as a result of different system loads, and so this see%@
not to be the major consideration. [28]
Irregular probes can be used to find time series properties
of a system, such as its periodogram, or ACF. Su
techniques could be used to detect periodicities in th@]
system, and warn of potential bias due to synchronizati?sn1 :
(if pure Poisson sampling is not used).

It is clear that these findings do not rule out either samplirigg]
approach. Rather a practitioner should choose the most ap%;’g]-
priate measurements for their application, but this should be

a choice informed by the above results.
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