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Abstract— Active probes of network performance represent
samples of the underlying performance of a system. Some effort
has gone into considering appropriate sampling patterns for
such probes: i.e., there has been significant discussion of the
importance of sampling using a Poisson process to avoid biases
introduced by synchronization of system and measurements.
However, there are unanswered questions about whether Poisson
probing has costs in terms of sampling efficiency, and there is
some misinformation about what types of inferences are possible
with different probe patterns. This paper provides a quantitative
comparison of two different sampling methods. The paper also
shows that the irregularity in probing patterns is useful not just
in avoiding synchronization, but also in determining frequency
domain properties of a system. The paper provides a firm basis
for practitioners or researchers for making decisions about the
type of sampling they should use in a particular applications,
along with methods for the analysis of their outputs.

Index Terms— Network performance, Internet measurement,
error estimation, measurement planning.

I. I NTRODUCTION

Active measurement of system performance is an integral
part of Network Quality Assurance (NQA). Fault detection
and Service Level Agreement (SLA) verification are just two
applications. A number of companies offer active measurement
services or devices (e.g., Matrix NetSystems, Keynote, Niksun,
Brix Networks, etc), and there are now a number of Inter-
net Engineering Task Force (IETF) Requests for Comments
(RFCs) [1]–[5] describing standards for such measurement.
However, the basic statistical properties of such measurements
are still poorly understood.

Active probing is notionally simple. We wish to understand
the performance of a packet network, and so sendprobe
packets into the network, and measure the performance of
these probes. These packets are samples of the performance of
the underlying network. They are usually performed from end-
to-end across a network, this being one of the chief advantages
of such an approach: no special access to the network in
question is required, and so measurements can be easily made
by customers or researchers.

Many samples may be needed, both to provide better
sampled statistics, and to allow observations of changes in
the network over time. However, there are clear scalability
issues: givenN end hosts, there areN2 end-to-end paths, and
if each path requires many measurements this could create a
significant network load. Hence, the pattern of probing must
be carefully planned.
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Naively, the probe packets would be separated by a fixed
sampling interval. However, there is the possibility that peri-
odic samples may be synchronized with a periodicity in the
system under observation, either by accident, or deliberate
malfeasance. In this case the probes might not observe the
true system behaviour.

It is not clear how prevalent periodicities are in the modern
Internet, but there are certainly theoretical grounds for their
existence. Auto-synchronization of network protocols [6], [7],
large volumes of streaming traffic, or other applications that
periodically make requests (such as NTP) may cause period-
icities. Furthermore, regular samples are easy to predict, and
therefore manipulate, perhaps by deliberately scheduling all
data packets away from times when probes are anticipated.
In addition, the probe packets themselves alter the network,
and there is the potential that they cause the network to
synchronize around their own period (in addition to other
impacts, for instance see [8]). Hence there is reasonable cause
to fear synchronization of probes and network.

Moreover, some sampling problems can occur where the
samples and system periodicities are not synchronized, or even
where the system is a-periodic but contains high-frequency
periodic components that result inaliasing.

Poisson sampling steps away from naive uniform sampling
by sending probes at the epochs of a Poisson Process. A result
known by the acronym PASTA (Poisson Arrivals See Time
Averages) ensures that (under relatively weak conditions) the
average state observed by such probes will converge to the
true average of the system under observation. Furthermore,
when Poisson sampling is used, the next arriving packet
cannot be anticipated, and so such measurements are harder
to manipulate.

Poisson sampling therefore avoids some of the problems of
uniform sampling. However, little work has considered the cost
of this type of sampling. A number of comments have been
made about difficulties introduced, for instance, the problems
of making some types of measurements such as delay varia-
tion. At least one IETF RFC [9] has been written in response
to these issues, but in many cases it is hard for a practitioner
to decide which type of measurement would be best for their
application. This paper is aimed at providing quantitative, and
qualitative advice towards making such decision by providing
a thorough analysis of the advantages of each approach.

For instance, little work has considered implications for
measuring higher-order statistics of the network (not just
averages). Can Poisson sampling measure properties such
as the delay variation or the power spectrum of a system?
This paper demonstrates that Poisson sampling can be used
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to perform most of the tasks we might reasonably wish to
perform with Internet measurements, e.g., estimation of

1) the mean, variance, and variance of differences (e.g., the
delay variation),

2) the frequency content via a periodogram,
3) the autocorrelation,

without interpolation. This paper also presents results show-
ing the advantages and disadvantages of such sampling. In
summary
• Poisson sampling results in a loss of efficiency, i.e., more

measurements are needed to obtain results of the same
accuracy, but the efficiency loss is much smaller than the
natural variation of measurement efficiency as a result of
changing network load.

• Both periodic and Poisson sampling can be used to
perform harmonic analysis of the network to examine it
for evidence of network periodicities. Poisson sampling
actually has an advantage in this regard — the Lomb-
Scargle Periodogram (Section IV) based on irregular
sampling can detect frequencies greater than the periodic-
sampling Nyquist frequency, allowing us to perform
analyses that would be otherwise impossible.

• Autocovariances of the processes of interest can be esti-
mated, and from these we can infer the delay variation
metrics that we would obtain from uniform probes.

Poisson sampling is a special case of irregular sampling
methods, but other types of irregular sampling would have
many of the same benefits, and similar analysis could be
applied. This is important because it is hard to produce a
genuinely Poisson traffic stream.

This paper is concerned with comparing the two main
types of probing, so that practitioners will know which to
use in a particular circumstance, and researchers will have
a better foundation for research in more complicated active
probing problems such as network tomography or bandwidth
estimation. Following the introduction, the paper presents
some background, notation and related work in Section II.
This is followed by Section III, which provides results for
the accuracy and efficiency of the two probing methods.
Section IV compares the two methods on the basis of how they
may be used to estimate time-series properties of the observed
system, such as power spectra and autocorrelation functions.
Such measures have been frequently used to characterize
Internet systems (for instance see the large literature on self-
similarity in network traffic). Section V discusses some of the
other issues, such as the issue of measuring properties such as
reordering of packets. The paper concludes in Section VI.

II. BACKGROUND AND RELATED WORK

A. Performance measurement technologies

There are many measurements we may collect from a
network: traffic, topology, or performance measurements. We
focus here on measurements of network performance, though
note that other supplemental measures may be required (e.g.,
network topology) to make sense of this data. Network perfor-
mance can mean many things, for instance: reachability, delay,
loss, jitter, reordering, and bulk throughput. We can also form

more complex functions of these metrics to attain measures
such as the subjective performance of an application, e.g.,
VoIP. Many examples of tools to perform such measurements
may be found at [10].

There are a number of ways in which we may collect data
about network performance:
Direct measurements: It is possible for a router, or switch
to maintain information about its own performance. For in-
stance to maintain data on the number of packets or bytes
in buffers, or the number of packets dropped. In principle,
such information could be collected without sampling (i.e.,
it could be collected in enough detail to reconstruct the exact
sample path). However, in practice there are limits on the (fast)
memory required to store such information, and the rate at
which it is collected. Despite its potential to be one of the best
sources of performance measurements available, it is often one
of the worst.
Active probes: The more common method used to infer
network performance is the well developed approach of active
probing, for instance see [1]–[5], [13], [14]. In this ap-
proach, we sendprobepackets into the network with precisely
controlled departure times, and measure their arrival times
elsewhere in the network. Such probes require installation
of probe equipment into a network, but this equipment is
typically fairly cheap, and it does not require special access
to a network (for instance, the boxes could be installed by
a customer, or researchers). There are many possible types
of probe: e.g., ICMP echo probes, TCP SYN/ACK probes,
DNS probes, HTTP page downloads, as well as dedicated
probe protocols, and many types of measurements: e.g., round-
trip or one-way measurements. These factors have led to
active probing being the most widely deployed form of IP
performance measurement.
Passive traffic measurements:An alternative approach is
passive traffic measurements. We can infer network perfor-
mance through measurements of the arrival time of a packet
at multiple points [15], [16]. This approach can also provide
data of very fine detail, but it also has limits. Firstly, such
measurements are limited to the locations of packet monitors.
Dedicated packet monitors are not typically expensive, but
involve non-negligible installation and maintenance cost, and
require privileged access to the network. More importantly,
passive monitoring of this type can only infer performance on
paths that carry traffic. Generally, passive measurements can’t
control the sampling pattern, and so can’t guarantee Poisson
or periodic samples.

For a practical comparison of some of the above techniques
see [17]. In this paper we will be mainly concerned with active
probing because we have control over the sample times, where
with passive measurements we are reliant on existing data
traffic. However our control over sampling times only applies
to samples of network performance — the time at which each
individual queue in the network is sampled will be delayed by
a random amount at previous queues. We discuss this issue
more completely in Section V-B.

Even simple measurements such as delays are comprised of
a number of components:

1) Packet processing delayis the delay to perform tasks
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such as forwarding table lookup, and is very small in
modern high-speed routers (e.g.,¿ 1 ms).

2) Packet transmit timeis the time from starting to send
the first bit of a packet onto the wire, until the last bit is
finished. It is typically small for high speed links, e.g.,
∼ 4.8µs for a 1500 byte packet on an OC48 link.

3) Propagation delayis the delay a packet experiences on
the wire, and is given by the physical distance divided by
the speed of light in fibre (roughly 200,000 km/s), e.g.,
∼30 ms for an East to West Coast in North America.

4) Queueing delayis the time spent by a packet in queues,
which depends on load, and can potentially be quite
large, e.g., 0.2 seconds, even on single OC48 line cards.

The two components that are significant, and therefore of
primary interest in most modern networks, are propagation
delay and queueing delay. Propagation delay is determined
by network topology and routing, and for the purpose of this
paper we shall consider it to be a constant (see [18] for a
more realistic view), which is derivable from other network
data (topology and routing information), or from long-term
measurements of the network. The queueing delays may be
seen as drawn from a random process, and one goal of this
paper is to estimate the behaviour of this process.

In addition to statistical variations in queueing delays, there
are measurement errors. Any set of performance measurements
contains errors and artifacts such as delays in time-stamping
a packet once it is received at a monitor. In a well designed
measurement system they should be an order of magnitude
smaller than the queueing variations, and so we shall not
consider these in detail here.

This paper focusses on network performance measurements,
but the analysis in this paper could equally be applied to
measurements of server performance. In principle, any system
that can be modelled as a queueing system is susceptible to
this type of analysis.

B. Statistical Notation

We shall denote a continuous-time stochastic process by
X(t). We denote the mean of the process at timet by E[X(t)]
(where E[·] denotes the expectation, or average), its variance
by Var(X(t)), and its autocovariance by Cov(X(t), X(t+s)).
We will be concerned with wide-sense stationary processes
where the mean, variance and auto-covariance are all constant
with respect tot, and can consequently be writtenE[X(t)] =
µX , Var(X(t)) = σ2

X , and Cov(X(t), X(t + s)) = RX(s),
respectively, where we refer tos as thelag. We also define the
AutoCorrelation Function (ACF) of the process byrX(s) =
RX(s)/σ2

X . Note that the term ACF is used (in some texts)
to denoteWX(s) = E[X(t)X(t + s)], but we shall refer to
this as the Mean Zero AutoCovariance Function (MZACF), as
it is equivalent to the autocovarianceRX(s) for a mean zero
process. In general the relationship is

WX(s) = RX(s) + µ2
X = σ2

XrX(s) + µ2
X . (1)

Another useful notation is an indicator function of the
process, for instance

I(X(t) ∈ B) =
{

1, if X(t) ∈ B,
0, otherwise.

(2)

Indicators show when arbitrary events occur. Note that
E[I(X(t) ∈ B)] = P{X(t) ∈ B}, and we may therefore use
indicators to construct other functions of the process.

1) Sampling: We shall assume that we can measure the
processX(t) at sample epochsT1, T2, . . . , TN . The measure-
ments form a discrete-time random process (or time series)
X(T1), X(T2), . . . , X(TN ), which we will sometimes denote
X1, X2, . . . , XN . The two main cases considered in this paper
are periodic sampling, whereTn = nts for some inter-
sampling intervalts, and Poisson sampling, where theTn form
a Poisson Process (described below). When we apply periodic
sampling, we shall equivalently use the termuniformsampling
to be consistent with the related signal-processing literature.

We wish to estimate some parameters of the stochas-
tic process X(t), and so construct an estimatês =
f(X0, X1, . . . , XN ). We shall measure the accuracy of this
estimate by the Mean Squared Error (MSE)E

[
(ŝ− s)2

]
.

Standard arguments show us that we can decompose this error
into a variance term, and a bias term, i.e.,E

[
(ŝ− s)2

]
=

Var(ŝ) + (E[ŝ]− s)2 , where the variance of the estimator
Var(ŝ) is of prime interest here, as we shall consider unbiased
estimators, i.e., estimators for which the biasE[ŝ]− s = 0, at
least asymptotically as the number of measurementsN →∞.
For instance, the sample mean defined by

X̂N =
1
N

N∑

i=1

Xi, (3)

is an unbiased estimate of the true mean of the stochastic
processX1, X2, . . . , XN given that this process is stationary
and ergodic (where ergodicity is a technical condition we
shall not discuss in detail here, but it ensures that a time
average such as the sample mean above will converge to the
true mean of the process). The variance ofX̂N depends on
the autocovariance of the sampled measurementsXi (we will
consider this in more detail below).

It is simple to show thatX̂N may not converge to the
mean of a non-stationary process, for instance, consider the
processX(t) = a(t) + cos(t) where a(t) is a stationary
mean-zero process. If sampled at time pointsTn = 2nπ, then
E[Xn] = 1, whereas the average valueE[X(t)] = 0. This
highlights the property alluded to earlier, namely that uniform
sampling, when precisely synchronized with a periodicity in
the observed process may result in biased estimates. Should
we worry about such a synchronization happening in reality?
Certainly periodic behaviour can happen in networks, but what
are the chances that we inadvertently synchronize exactly to
these phenomena? The problem is that active probes are just
that — active. It is possible that they stimulate activity at
precisely the frequency at which they arrive, thus causing the
network to synchronize around these probes.

There are two methods typically used to avoid such prob-
lems. Firstly, in signal processing, one passes a signal to be
measured through a low-pass filter with cut-off thresholdfc,
and then samples (uniformly) with sample frequencyfs > 2fc.
We shall discuss the reasoning behind this, and in particular
the problem of aliasing (of which the above is a special case)
in Section IV, but note that prefiltering of the signal is not
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possible for the active probing methodology discussed above.
The second method for avoiding the problem is to randomize
the sampling intervals such that the epochsTn form a Poisson
process, which is described below.

Note that a large part of this paper is applicable to other
sampling processesTn. This is important because

• Even in uniform sampling there is often some jitter in the
measurements (it is difficult to ensure probe packets are
sent at precise intervals).

• Where Poisson sampling is used, there is some minimum
time between packet probes (at least because of the finite
size of packets), and this means that no probe stream is
perfectly Poisson.

2) Frequency Domain properties:We often wish to analyse
a set of data to discover if it has periodic components. Such
analysis is most easily accomplished in the frequency domain.
A typical approach to obtaining such information is using the
Fourier Transform (FT), defined here with its inverse for a
function g(t) by

FTg(f)=
∫ ∞

−∞
g(t)e−i2πft dt, g(t)=

∫ ∞

−∞
FTg(f)ei2πft df,

(4)
or for uniformly-sampled discrete-time data, we use the Dis-
crete Fourier Transform (DFT)

FTX(k) =
N−1∑
n=0

Xne
−i2πkn

N , Xn =
1
N

N−1∑
n=0

FTX(k)e
i2πkn

N .

(5)
To detect sinusoidal signals, we often plot the periodogram
(though note there are many variations on this method, one of
which we discuss below), which is proportional to the squared
magnitude of the FT, for instance in the discrete case

PX(k) =
1
N
|FTX(k)|2 =

1
N

∣∣∣∣∣
N−1∑
n=0

Xne−i2πkn/N

∣∣∣∣∣

2

. (6)

It is common to report the discrete spectra in terms of the
index k, which we can convert to a frequency by takingf =
k/(tsN) for uniformly-sampled time series. The more data
we have the finer the frequency resolution, while the faster
the sampling rate (smallerts) the wider a frequency band we
can study (Section IV-A provides more detail of the Nyquist
frequency, which specifies the frequency band we can study).
Note that often frequencies are reported usingω = 2πf in
units of radians per time interval.

Given a stochastic processX(t), we typically talk about
the spectral densityrather than periodogram. Loosely, it gives
the expected periodogram, though its actual values for a given
random signal would be random variables. We shall abuse
notation here and useP to indicate the spectral density. An
important result in this context is the Wiener-Khintchine (WK)
theorem, which relates the spectral density toWX(s), by the
Fourier transform, i.e., in the continuous case,

PX(f) =
∫ ∞

−∞
WX(t)e−i2πft dt. (7)

In the discrete case it is only true as the number of samples
goes to infinity, but for finiteN we can take the approximation

PX(k) ' 1
2N + 1

N∑

n=−N

WX(tsn)e−i2πkn/N , (8)

and obviously we can determineWX via the inverse transform.
For both deterministic and stochastic signals we refer to the
term atf = 0 as the DC term.

C. The Poisson Sampling Process

The Poisson Process (PP) is the renewal process formed by
taking Independent, Identically Distributed (IID) exponential
Random Variables (RVs){Si}∞i=1, and forming timesTn =∑n

i=1 Si. Formally, the PP is defined by the process that counts
the number of renewals up to timet, i.e.,

N(t) =
∞∑

i=1

I(Tn < t), (9)

whereI(·) is an indicator function.
The inter-renewal timesSi have an exponential distribution

P{Si < s} = 1−exp(−λs) whereµ = 1/λ is the mean inter-
renewal time, and for the homogeneous PP,λ is a constant
called therate. The mean of the PP is given byE[N(t)] = λt,
and its autocovariance function is given [19] by

RN (t, s) =
{

λs, if t > s,
λt, if t < s.

(10)

Given the PP is clearly non-stationary we are not primarily
interested in it, but rather in samples taken at the epochs of this
process. We shall define a new process, namely thePoisson
Sampling Process(PSP) as the derivative of the PP, i.e.,

S(t) =
∞∑

i=0

δ(t− Ti) =
dN

dt
, (11)

whereδ(t) is the Dirac Delta function. Expectation is a linear
operator, and so

E[S(t)] = E

[
dN

dt

]
=

dE[N(t)]
dt

=
d

dt
(λt) = λ,

and we can likewise derive the autocovariance ofS(t) us-
ing the double derivativeE[S(t)S(s)] = E

[
dN
dt

dN
ds

]
=

∂
∂t

∂
∂s E[N(t)N(s)], resulting inRS(t, s) = λδ(t − s). Note

that the sampling processS(t) is stationary, and so we write
the autocovariance, and ACF as a function only of the lag
u = t− s, e.g.,

rS(u) = δ(u). (12)

The delta function is (by definition) zero for non-zero lags
u, and so the PSP is uncorrelated in time. Another way of
stating this is to note that the PP has independent increments,
a feature sometimes used in alternative definitions. This lack
of correlation of the sampling process results in the key
properties of interest here. Namely, that the number of samples
to occur in non-overlapping time intervals will be independent
random variables. Hence, given information about the past of
the process, we gain no information about its future — it is
impossible to anticipate the samples.
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It is also simple to derive the fact that the number of samples
to occur in any arbitrary interval[t, t + s] will be a discrete
Poisson random variable, with meanλs, and the events in the
interval will be uniformly distributed over that interval.

1) PSP in the Frequency Domain:We can also represent
a PSP in the frequency domain through the WK theorem
(7). Note that for the Poisson sampling processWS(u) =
σ2

SrS(u) + µ2
S = λδ(u) + λ2. We can easily take the FT of

this function to obtain spectral density

PS(f) = λ2δ(f) + λ. (13)

The (almost) flat nature of the spectral density is often referred
to as “white”. White noise refers to a process whose spectral
density contains equal power in all bands (the metaphor refers
to white light despite this not containing an equal spectral
content). The PSP is perhaps the simplestsamplingprocess to
have this property.

2) PASTA: This property results from the fact that the
system cannot anticipate the number of arrivals in a PSP. It
seems instructive to consider the why this leads to PASTA,
and so we shall present a sketch of the key results here, in
particular to see the limitations of PASTA.

Formally, we define an indicator functionUB(t) =
I(X(t) ∈ B) for measurable setB, and then we define the
time spent in stateB, and the number of arrivals that see state
B over interval[0, t) by

V (t) =
∫ t

0

UB(u) du, Z(t) =
N(t)∑

i=1

UB(Ti), (14)

respectively, whereN(t) is the PP defined above. Although
technical conditions such as left-continuity of sample paths
are required, the PASTA theorem intuitively comes from one
result:Z(t) can be written as a Riemann-Stieltjes integral, and
this integral can then be approximated by finite sums

Z(t) =
∫ t

0

UB(u) dN(u)

'
n−1∑

k=0

UB(kt/n)
[
N

(
(k + 1)t

n

)
−N

(
kt

n

)]
, (15)

for sufficiently large n. For any arrival process which
cannot be anticipated the number of arrivals in interval
[kt/n, (k + 1)t/n) is independent of the state of the system
at time t, and so

E[Z(t)] '
n−1∑

k=0

E[UB(kt/n)] E

[
N

(
(k + 1)t

n

)
−N

(
kt

n

)]
.

Now, in the case of Poisson samples, the number of arrivals
in time [kt/n, (k + 1)t/n) is λt/n, and so we can write

E[Z(t)] ' λ
t

n

n−1∑

k=0

E[UB(kt/n)] ' λ

∫ t

0

E[UB(u)] du,

for sufficiently largen (a real proof requires use of dominated
convergence theorems to deal with the limit asn → ∞).
It is then a technical matter to show that convergence of
E[Z(t)]/E[N(t)] to E[V (t)]/t occurs ast →∞ [20], [21].

The argument above relies on arrivals being Poisson, but it is
important to note that the Arrivals See Time Averages (ASTA)
property applies for other arrival processes [20], [21]. The key
detail is the lack of anticipation. For instance, note that none of
the above requires stationarity of the processX(t). If it is, and
the increments of the sampling processN (t + s)−N (t) are
independent of the state of the processX(t), then E[UB(t)] =
E[UB(0)], and we can write

E[Z(t)] ' E[UB(0)]
n−1∑

k=0

E

[
N

(
(k + 1)t

n

)
−N

(
kt

n

)]
,

' E[UB(0)] E[N(t)] , (16)

and once again we can prove ASTA. Note that here the arrival
processN(t) is no longer necessarily Poisson, however the
lack of anticipation property must still hold, and so we cannot
use this result for an arbitrary arrival process. The lack of
anticipation requires the system does not try (deliberately, or
through accidental synchronization) to anticipate the samples.
In fact the Weak Lack of Anticipation (WLA) property [21]
requires only thatN(t + s)−N(t) andU(t) be uncorrelated
for 0 ≤ s ≤ s0 for somes0 (along with technical conditions
on the continuity of the functions). The WLA property is true
in many systems, but it is dangerous to assume so without
any evidence. A simple example where WLA does not apply
is where the system and measurements are synchronized in
some way, but WLA is always true for Poisson samples. Hence
Poisson sampling is considered to be safer.

The above proof sketch is instructive because it shows that
the ASTA property applies to point estimates of properties of
the system. ASTA doesnot apply where we have a property
that depends on the process at more than one point in time,
such as the spectral density, or delay variation of the process.
Such measures are derived for multiple time points in the
system, bringing the system correlations into the estimates.

3) Other properties of the PP:The inter-sample times of
the PSP,Si, take an exponential distribution and therefore the
PSP is easy to generate by generating theSi, but we could
also generate a PSP by exploiting the fact that the number
of events to occur in any arbitrary interval[t, t + s] will be
a discrete Poisson random variable (with meanλs) and the
events in the interval will be uniformly distributed over that
interval. Also note that the sum of two PPs also forms a PP,
as does a PP which is thinned by randomly removing points
with probability p.

The time betweenn samples will be the sum ofn expo-
nential distributions, which is given by an Erlang-n distribu-
tion [19], with density function

P

{
n∑

i=1

Si ∈ [s, s + ds)

}
=

λ(λs)n−1e−λs

(n− 1)!
ds. (17)

This property is important in this context because the Erlang-n
distribution approaches a Normal distributionN(n/λ, n/λ2)
for largen. As n becomes large, we could consider the Erlang
times to be uniformly spaced with some small random jitter.
Hence, while at one level the PSP is completely random, if
we take everynth probe, and only use this data, it is close
to uniform sampling with probes spaced atn/λ intervals. So
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periodic subsamples from a PSP can approximate uniform
sampling, and hence there may be less difference between
Poisson and uniform sampling than is commonly assumed.

D. Related Work

The PASTA result [20]–[23] is well known in the com-
munications networking community, as are the problems of
synchronization of probes with network periodicities (e.g. see,
[6], [7]) with a result that Poisson sampling is discussed in a
number of IETF RFCs [3]–[5], [24], [25].

However, there has been little work on the topic since these
foundations. One recent paper [26] starts to consider the issue.
The paper uses a large number of experiments to consider
whether the use of Poisson sampling makes any difference in
practice. The conclusions are largely negative, i.e., they found
little evidence for differences between Poisson and uniform
samples of delays, losses, or packet-pair dispersion. There are
intrinsic difficulties to such a study primarily because we can
only compare the difference between the two, not how accurate
they are with respect to the underlying process. Further, exper-
iments cannot prove a negative — they cannot show that there
is never a problem with network and probe synchronization.
An additional paper [23] considers the difficulties of inverting
measurements based on Poisson samples.

This paper will draw on the work contained in [8], in
particular, methods for estimating the accuracy of measured
network performance metrics. There are also a number of
works on irregular sampling in other contexts. We discuss
these in more detail in Section IV below.

III. A CCURACY AND EFFICIENCY

We wish to measure properties of a stochastic process
describing the network behaviour, and so it is natural to ask
how accurately we can do so. Note that this is not accuracy as
specified in the relevant RFCs, where it means the accuracy
of the devices used for measurement. Here we mean accuracy
with which we can determine the parameters of a (wide-
sense) stationary stochastic process (the observed delays). It
is valid to measure a non-stationary process, for instance
to perform change detection for the purpose of detecting
anomalies, however, when doing so, the concept of accuracy
of the measurements has less meaning.

Given we shall typically apply unbiased estimators, the
variance of the estimator is equal to the MSE. Variance is
usually monotonically decreasing with the number of probes
N , and so an alternative way of describing the problem is using
statistical efficiency, which describes how efficiently each
data point is used in estimating parameters. More precisely,
statistical efficiency is the minimum possible variance for an
unbiased estimator divided by its actual variance. In general,
this depends on the particular parameter to be estimated, and
the estimator used. We shall focus on a simple parameter
(the average delay), and use a simple statistic to estimate this
parameter (the sample mean). This is not necessarily the best
linear estimate of the mean of the data, but it is known to have
high relative efficiency (> 98%) compared to the best linear
estimate (which is unknowna priori) [27].

The PASTA property [22] ensures thatE[X(t)] = E[Xn],
at least in a limiting sense. However PASTA says nothing
about the rate of convergence, and it is intuitive that the
variance would increase with Poisson sampling, given we are
adding variability to our measurement process, but we show
this is not necessarily true below.

Take stationary stochastic processX(t) and further simplify
(without loss of generality) by shifting the process so that it
is mean zero, and the variance of the sample mean

Var
(
X̂N

)
= E

[
X̂2

N

]
= E




(
1
N

N∑

i=1

X(Ti)

)2



=
1

N2

N∑

i=1

N∑

j=1

E[X(Ti)X(Tj)] . (18)

Hence the variance of the estimator depends on correlations
between samples. For uniform samplesTj−Ti = ts(j−i), and
hence for a mean zero processE[X(Ti)X(Tj)] = RX(ts(j−
i)). For Poisson samples the timesTj − Ti are Erlang-
(j − i) random variables, and so the expectation is given by
a probability integral over the autocovariance. It is commonly
assumed when making measurements that correlations drop
to zero if we space the measurements sufficiently apart, and
so we need not include these terms in our calculations of
variance. However, in the Internet, the correlations may extend
further than we can naturally space measurements [8], and
furthermore, when performing Poisson sampling, the intervals
between probes are random, and so some intervals may be
very short. Hence, we must take account of the correlations
in the system under observation.

The formula above is computable, but more instructive
results regarding the above variance can be derived in the limit
asN → ∞. Limiting formula have been derived in the form
of Central Limit Theorems. For uniform samples, the standard
theorem states that

√
N

(
X̂N − X̄

)
→ N(0, s2

X), (19)

whereN(0, σ2) denotes a normal distribution with zero mean,
and varianceσ2, and s2

X is referred to (see [28]) as the
asymptotic varianceof the processX, and it is defined by

s2
X ≡ lim

N→∞
N Var

(
X̂N

)
. (20)

We may compute the asymptotic variance for uniform samples
using the following relationship (from [29]),

s2
uniform = σ2

X

(
1 + 2

∞∑
n=1

rX(n ts)

)
, (21)

wherets is the time between the samples, and the sum is finite
(convergence of the sum is not guaranteed, with alternative
results in that case).

A similar theorem for Poisson samples is derived in [8]

s2
Poisson = σ2

X

(
1 + 2λ

∫ ∞

0

rX(u) du,

)
, (22)

when the integral is finite. Note that if we takeλ = 1/ts then
the average rate of probes for both methods is the same. Given
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ts → 0, then 1
λ

∑∞
n=1 rX(nts) →

∫∞
0

rX(u)du, so the two
methods are consistent for high sampling rates.

The main result is that for certain types of autocovariance,
either Poisson or uniform sampling could be superior. For
instance, where the autocovariance has oscillatory behaviour
we could construct a function such that the sum overrX at
regular points is either greater or smaller than the integral over
the whole autocovariance function. Given that either case is
possible, what is likely? We shall consider this in the case of
a simple queueing model, the M/M/1 model.

A. Accuracy of measurements of a simple queueing model

One of the simplest queueing systems is the M/M/1 queue,
i.e., a queue with a Poisson arrival process (rateλ) of packets
whose service times are exponential (with mean1/µ). We shall
initially use this queue to model the effect of the two sampling
regimes, because of its simplicity and the fact that
• The sum of two PPs is also a PP, and we can simply

model a system including Poisson probe traffic by adding
the rate of probe traffic to data traffic with the result still
having Poisson arrivals.

• The output of a M/M/1 queue is also Poisson, allowing
us to obtain results for concatenated queues.

We denote the traffic intensityρ = λ/µ. The queue is stable
with a finite average buffer length forρ < 1 and we restrict
our attention to this region. The M/M/1 queue is well studied,
with many text book results, e.g., see [30]. For instance, the
mean and variance of the number of packets in the system are

µQ = E[Q] =
ρ

1− ρ
, σ2

Q = Var(Q) =
ρ

(1− ρ)2
.

The mean and variance of the waiting times are

E[W ] =
1
µ

E[Q] , Var(W ) =
1
µ2

(
µQ + σ2

Q

)
.

The M/M/1 auto-covariance results are not as simple, because
of their dependence on the transient behaviour of the M/M/1
queue. We can find the auto-covariance of this queue in [31],
[32]. The autocorrelation function is given by

rQ(s) =
(µ− λ)3

π

∫ 2π

0

sin2 θ
e−w|s|

w3
dθ, (23)

wherew = λ + µ − 2
√

λµ cos θ. This is not quite the same
as the auto-correlation of the delays, but it is close enough to
give us the required insight for this paper, whereas the formula
for waiting times are considerably more complicated, without
providing any additional insight. Morse [31] gives the integral
of the ACFrQ(s) over s as does [28, (22)], but note the time
scaling of1/µ in [28]. Given such a scaling, the observation
time is measured in units of number of (average) service times.
Given this integral we can analytically compute the asymptotic
variance for Poisson sampled measurements of the number of
packets in the system, and this is closely approximated by

s2
B̂

(p, λ, µ) ' ρ2

(1− ρ)2
+ p

4ρ3

(1− ρ)4
, (24)

where we note that the Poisson samples compose proportion
p of the traffic sent to the queue, so thatλs = pλ, whereλ is
the total arrival rate of packets to the system.

We do not have a closed form for the discrete sum (21),
but it can be computed numerically by summing over the
above autocorrelation, which we can evaluate using numerical
integration. Alternatively, we can apply the approximation
given in [33, (3.7)], i.e.,

rQ(s) ' 1
2

[
e−A|s| + e−B|s|

]
,

where

A =
(1− ρ)2

1 + ρ +
√

ρ
, B =

(1− ρ)2

1 + ρ−√ρ
.

(25)

This form can be analytically integrated to give
∫ ∞

0

rQ(s) ds ' 2(1 + ρ)
2(1− ρ)2

, (26)

and summed to give
∞∑

n=1

rN (nts) ' 1
2

[
e−Ats

1− e−Ats
+

e−Bts

1− e−Bts

]
. (27)

Figure 1 shows a comparison of the asymptotic variances
for Poisson and uniform sampling. The figures show both
the approximation (lines), and the exact numerical results
(markers). Figure 1 (a) shows the impact of varying the
sampling interval. The figure shows that Poisson sampling
has a higher asymptotic variance, which should be expected
for a monotonically decreasing ACF. Note also that the figure
seems to indicate that the two asymptotic variances converge
for ts → 0 as we would expect. Figure 1 (a) shows the results
for a moderate loadρ = 0.75, but the results above show a
dependence onρ, which we explore in Figures 1 (b) and (c),
by showing (for a fixed sample rate) the results for a range
of values ofρ. For ts = 100, we note significant variation
between the two asymptotic variances, but that the differences
decrease for heavy and light loads.

However, the most interesting thing to note from Fig-
ures 1 (b) and (c) is the dramatic dependence of the asymptotic
variance on the system loadρ. As noted in [8], the total traffic
rate has a very significant impact on measurement accuracy.
This was argued in [8] to be a much more general effect
than we have demonstrated here (for the M/M/1 queue). It
is important here because it shows that there ismuch more
variation in measurement accuracy between measurements
taken at different loads, than we might see using different
sampling methodologies. The variations for different sampling
methods should be seen as a minor effect in comparison.

Figure 1 also shows that for large sampling rates the
asymptotic variance increases. This results from the fact that
the samples are more closely spaced, and so they are more
correlated, and less additional information is added per sample.

B. Fixed time-interval sampling

One issue that arises in using Poisson sampling is that fact
that the time taken to obtain a fixed numberN of samples
varies. Alternatively, given a fixed time intervalT , the number
of samples will be random. The results above tell us the
asymptotic variance for a fixed number of samples. We should
also consider the case of a fixed time interval.
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(a) Asymptotic variance forρ = 0.75 and a
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(b) Asymptotic variance for range of traffic
intensitiesρ with ts = 100.
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(c) Asymptotic variance for range of traffic
intensitiesρ with ts = 1.

Fig. 1. Asymptotic variance for Poisson and uniform sampling of the M/M/1 queue. The lines show results derived from approximations (26) and (27),
whereas the markers show results derived from direct numerical integration. Note time is given in units of average service times.

Given a fixed time interval, the number of samplesNT will
be distributed as a Poisson random variable, i.e.,

P{NT = n} =
(λT )n exp(−λT )

n!
, (28)

which has meanλT and varianceλT . For large values of
λT we may approximateNT by a normal distribution, i.e.,
NT ∼ N(λT, λT ). The variance ofNT is an additional source
of variance in the results.

To analyze this, let us consider the simple case of uncorre-
lated measurements. In this case the sample mean, conditional
on NT is has varianceσ2

X/NT , for NT > 0. Note that for
true Poisson sampling there is a non-negligible chance of zero
samples occurring, so we condition on at least one sample,
resulting in a distribution

P{NT = n} =
(λT )n exp(−λT )
(1− exp(−λT ))n!

. (29)

Take expectation over the conditional variance, and use the
notationX̂T to denote the sample mean of Poisson samples
over a fixed time interval, we can see that

Var
(
X̂T

)
= E

[
Var

(
X̂NT

)]
= σ2

X

e−λT

(1− e−λT )

∞∑

i=1

(λT )n

n.n!
.

Figure 2 shows the relative variance of the sample mean for
IID RVs generated by uniform versus Poisson samples, i.e.,
the figure shows Var

(
X̂T

)
/ Var

(
X̂N

)
, whereN = λT . The

figures shows that for smallλT , the variance in the Poisson
samples increases the variance of the estimator by up to 32%,
but that this increase quickly becomes negligible. After only
around 50 samples (λT = 50), the loss in efficiency of the
two becomes around 2%, and given the number of samples
collected in many experiments, this can be considered to be a
negligible source of error.

The drop below 100% forλT = 1 arises because in this
case, uniform sampling results in exactly one sample, but for
Poisson samples we must condition on at least one sample
being made otherwise we cannot estimate the delay at all.
Hence there is a notional advantage to Poisson sampling for
low λT , but it arises due to the conditioning, and so should
not be given much weight.

C. Impact of active probes

The results above neglect the impact of the active probes
themselves (results are reported for traffic intensities, irre-
spective of what proportion of this traffic is probe traffic,
or genuine data traffic). The work of [8] showed that the
impact of active probes themselves was substantial (in that
it increased load, and therefore correlation scale, and hence
the asymptotic variance). We will not repeat this discussion
here, due to limitations in space.

However, there is one respect in which this work differs
from [8]. When Poisson probes are combined with Poisson
traffic, the resulting input traffic is still Poisson. However,
when uniform probes are combined with Poisson traffic, the
result now deviates from Poisson, which will distort the
behaviour of the queue. This type of effect should be minor
for low sampling rates.

D. Long-range dependence

No-one would claim that the M/M/1 queue is a good
model for Internet performance. A more realistic model would
include features such as Long-Range Dependence (LRD). As
noted in [8], LRD changes the quantitative results described
above, but qualitatively similar phenomena are observed. See
[8] for some informative simulations. Most importantly, where
we have LRD, the autocovariance function is not integrable,
and so the CLT used above in (21) and (22) will not hold. In
fact we need to use a generalized CLT, which will result in
much slower rates of convergence.

IV. T IME-SERIES PROPERTIES

Many time-series algorithms are designed with uniformly-
sampled data in mind. For instance, a problem of interest in the
Internet is the detection of synchronization effects. These have
had an impact of sampling methods, but moreover, synchro-
nized oscillations often result in reductions in performance. A
case in point is TCP congestion-control synchronization [6],
but it has been noted in other contexts such as routing [7].
However, there are few papers concerning detection of such
oscillations in practice (for one example see [34]), perhaps in
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Fig. 2. The relative variance of the sample mean for IID random variables
generated by uniform versus Poisson samples.

part because detection of such frequency components using
irregularly sampled data seemed to be a hard problem. This
paper demonstrates that this should not be a major issue, i.e.,
that we can detect periodic components of signals even where
the data is irregularly sampled.

The problem of detection of periodic components of uni-
formly sampled data has been extensively studied. There are
a number of approaches, but the simplest (conceptually) is to
take the Discrete Fourier Transform (DFT), and examine the
corresponding periodogram for peaks that would correspond
to a periodic signal. There are a number of issues related to
this method, many of which we shall omit in this paper (e.g.,
those concerning numerical properties of the periodogram).
However, there is one critical issue, that of the Nyquist
frequency, which we shall discuss further in Section IV-A.

One method to apply time-series algorithms to Poisson data
would be to re-sample the data onto a uniform grid through
interpolation, but in doing so we run the risk of introduc-
ing unknown interpolation artifacts. However, in fields such
as astronomy where irregularly observations are unavoidable
considerable work has been devoted to analysis of such time
series. In particular, we can determine periodicities present in
such data using the Lomb-Scargle Periodogram (LSP). This is
a natural generalization of the standard periodogram defined
in (6). It can be seen as analogous if we expand the complex
exponential in the periodogram (6) inω = 2πf to give

PX(ω) =
1
N




(
N∑

k=1

Xk cos(ωTk)

)2

+

(
N∑

k=1

Xk sin(ωTk)

)2

.

The LSP [35]–[37] is instead defined by

P
(LS)
X (ω) =

1
2




(∑N
k=1(X(Tk)− X̄) cos(ω(Tk − τ))

)2

∑N
k=1 cos2(ω(Tk − τ))

+

(∑N
k=1(X(Tk)− X̄) sin(ω(Tk − τ))

)2

∑N
k=1 sin2(ω(Tk − τ))


 ,

whereτ is a frequency-dependent time shift included to make

the periodogram time-shift invariant and defined by

tan(2ωτ) =
∑N

k=1 sin(2ωTk)∑N
k=1 cos(2ωTk)

.

The LSP P
(LS)
X gives us information about the frequency

content of the signal at frequencyω. There are several methods
for deriving, or justifying the LSP. For instance, as a peri-
odogram that guarantees a flat spectral density when applied
to irregularly sampled white noise [36], or which results from
performing a least-squares fit of sinusoids to the irregularly
sampled data (the standard periodogram can be thought of in
the same way for regularly sampled data) [35]. The statistics
of the LSP are known, and so we can determine simple
hypothesis tests for the presence, or absence of particular
frequencies in the measured signal.

As describe above the algorithm is not particularly efficient.
However, fastO(N log N) algorithms for the computations of
the LSP exist [37], [38], much as the Fast Fourier Transform
exists for the DFT.

Though it has been explicitly applied to Poisson sampled
data [39], the LSP is not just applicable to Poisson sampled
data. For instance, passive sampling of packet delays will also
result in an irregularly-sampled times series, because sample
times can’t be controlled, and we could apply the LSP here.

In this paper we shall again use the M/M/1 queue as an
example. In particular, consider the ACF of the M/M/1 queue,
given in (23). The WK theorem (7) allows us to compute
the spectra of the M/M/1 queue from this relationship by
taking the FT ofWQ(s). To gain some insight into the shape
of the spectra, we can use the FT of approximation (25) to
analytically derive an approximation for the spectra

FT {rQ(t)} ' A

A2 + 4π2f2
+

B

B2 + 4π2f2
. (30)

The discrete spectra turn out to be a little different. Taking the
DFT of rW (nts) we get two terms of the form

N∑

n=−N

e−A|nts|e−inω

= 1 +
N∑

n=0

e−nAtse−inω +
N∑

n=0

e−nAtseinω

= 1 +
N∑

n=0

(
e−(Ats−iω)

)n

+
N∑

n=0

(
e−(Ats+iω)

)n

→ 1 +
e−(Ats−iω)

1− e−(Ats−iω)
+

e−(Ats−iω)

1− e−(Ats+iω)
, (31)

in the limit asN → ∞. In addition to this term, we add a
similar one withA replaced byB, and the mean queue results
in an additionalµ2

Qδ(k) term.
Figure 3 shows the standard and LSPs for uniform and

Poisson sampling of a simulated M/M/1 queueing process
with ts = 100 unit service times,ρ = 0.95, and N =
100, 000 arrivals (note the first 5000 are discarded to avoid
transients). The total number of samples is therefore near 1000
in each case. We deliberately choose a high-load example
to illustrate the spectrum more clearly. Cases with low load
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(c) LSP of M/M/1 plus a cosine.

Fig. 3. Periodograms of the M/M/1 queue withρ = 0.95 to show a wider-band spectrum. In each figure the top plot shows the periodogram using uniform
sampling, the middle shows Poisson sampling, and the lower plot shows the theoretical spectral density of the queueing process. The Nyquist frequency is
shown by vertical dashed lines. In plot (c) an additional cosine with frequencyf = 1.5/(2 E[ts]) is added, illustrating aliasing for uniform sampling. The
signal can be unambiguously detected using the LSP and Poisson sampling (see circles) even though it lies above the Nyquist frequency.

are qualitatively similar, though the periodograms become
flatter (apart from the delta atf = 0) as the strength of the
correlations is reduced. The figure also shows the theoretical
spectral density as described above.

Figure 3 (a) shows the periodogram for uniform sampling
(top plot), which matches what we would expect from the the-
oretical spectral density (bottom plot) within the Nyquist band
(vertical dashed lines), but thereafter repeats periodically due
to aliasing (see below). Surprisingly, the standard periodogram
for Poisson sampling (middle plot) also appears to match the
true spectral density within the Nyquist band. We will discuss
this in Section IV-B, but note that it is not a generic property
for Poisson sampling, but one peculiar to the M/M/1 queue.

Figure 3 (b) shows the LSPs for uniform and Poisson
sampling. We will discuss these further in Section IV-A but
note that the LSP for Poisson sampling (middle plot) differs
noticeably from the theoretical spectral density. The main
difference is that the noise floor for the LSP is around zero
dB, masking the true spectrum of the process for frequencies
greater than 1 cycle per 1000 service times. On the other hand,
it avoids the aliasing effects seen in the other plots.

A. Aliasing

When data is uniformly sampled at frequencyfs (that is,
the samples are separated by timests = 1/fs), we lose data
(concerning the signal between samples), and this in turn may
lead to an ambiguity. Signals with different frequencies may
result in identical samples, e.g., Figure 4 shows an example
of two sinusoids which could generate the same set of sample
data points (shown in the figure as circles). This problem is
generally referred to as aliasing. Aliasing can be avoided if the
highest frequency present in the signal has frequency< fs/2,
the so called Nyquist frequency, with the result that a signal
f(t) can unambiguously be reconstructed from its samples if
sampled at twice the rate of the highest frequency present.

Figure 3 illustrates the problem of aliasing in our context.
The top plots show the periodograms for uniform samples.
We can see that the central peak aroundf = 0 is aliased to
create to additional peaks outside the Nyquist band (shown
by vertical dashed lines). This is what one typically expects

to see in the frequency domain — periodic repetitions of the
spectra of the process at intervals of the Nyquist band.

In fact, the bias introduced when we uniformly sample a
system synchronized with its periodicities is a special case of
aliasing. Frequencyf = n/ts is aliased to the DC term in the
spectrum, hence distorting the estimate of the mean.

In order to ensure that aliasing not occur, signals are often
filtered prior to sampling, typically with a low-pass analogue
filter with cut-off below the Nyquist frequency. Given such
filtering, we can unambiguously detect periodic components
of the signal, but not over an arbitrary range — signals above
the cut-off are effectively removed from the signal, and so
are invisible. However, there are a number of applications
where the sampling methodology makes pre-filtering the sig-
nal inherently hard. As in many astronomical observations,
Internet measurement samples are obtained by experiments,
and we have no opportunity to low-pass these samples prior
to performing the experiments. This results in a problem for
Internet measurements. How can we prevent aliasing?

As it turns out, irregular sampling has its key benefit here.
It has been shown [40] that the analogue of the Nyquist
frequency is considerably higher for irregularly sampled data
than for uniformly sampled data. The naive intuition is that the
increased Nyquist frequency arises because with irregular sam-
pling, some samples will be closer together than the average
sampling distance, thereby removing ambiguity. However, it is
not true that the new Nyquist frequency is1/2min(Ti+1−Ti).
In fact [40] shows considerably higher frequencies may be
resolved (it uses 122 data points of astronomical data, and
successfully finds periodic behaviour with frequency of the
order of a 100 times the uniform sampling Nyquist limit).

Figure 3 (b) illustrates this property. Note that when Poisson
sampling is used (middle plot), the aliasing of the central
peak to higher frequencies is eliminated. Figure 3 (c) further
illustrates aliasing. In this case, we add a cosine wave with
frequency1.5× the uniform sampling Nyquist frequency to the
queueing process before sampling. When uniform sampling
is used (top plot), we see multiple aliased peaks resulting
from the cosine function. When Poisson sampling is applied
(middle plot), the two genuine peaks appear at the correct
frequency. The cosine has frequency outside the uniform sam-
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Fig. 4. Aliasing in the time and frequency domains. The figure shows two
sinusoids that generate the same set of sample points (circles).

pling Nyquist band, but can still be unambiguously detected
using the LSP.

To correctly understand the result, we must correctly un-
derstand the impact of sampling in the Fourier domain, often
referred to as thewindow function. We may think of sampling a
continuous function as the process of multiplying this function
by a sample process, i.e.,

(Xn)(t) = X(t)S(t) = X(t)
∞∑

k=−∞
δ(t− Tk). (32)

The FT of the product of two functions is the convolution of
the respective FTs, and so

FT{(Xn)} = FT{X(t)} ∗ FT{S(t)}, (33)

where ∗ denotes the convolution operation. In the case of
uniform sampling,

FT

{ ∞∑

k=−∞
δ(t− kts)

}
=

∞∑

k=−∞
tsδ(ω − k/ts), (34)

which, when convolved with the true spectrum, results in rep-
etitions of the spectrum at intervals of1/ts. These repetitions
do not overlap if the spectral density of the spectra is isolated
into a band1/ts in width. Note also that the FT of a real
process is even, and so there is only half this band available
for non-redundant information.

On the other hand, the spectral density of the Poisson
sampling process is given in (13). We can see that it is
a constant, plus aδ DC term. Hence, when we convolve
with this spectral density, theδ term results in the correct
spectra (without repetitions), while the constant results in even
spreading of the spectral content of the signal across all bands,
albeit at a lower level than the signal of interest. Hence, this
explanation provides an intuitive understanding of the origin
of the noise in the LSP for the Poisson sampling cases. It
also suggest that we can find periodic components of arbitrary
frequency in a signal (i.e., there is no Nyquist limit), but note
that this property only applies in the limit as the number of
samples goes to infinity. However, even for finite samples we
can certainly detect frequencies well above1/2ts.

Figure 3 (b) shows the increase in background noise that
occurs in the LSP. Although methods exist to reduce this,
it is still an issue if we are attempting to characterize the
spectral density of the process. On the other hand if we wish
to detect the presence (or absence) of a limited number of
sinusoids in the time series, then it is quite practical to do so,

and standard statistical tests exist [39]. Hence, this approach
is quite viable should we wish to, for instance, detect network
synchronization effects.

B. Autocorrelations

The standard estimator of autocovariance for regularly sam-
pled data is well known. Obviously, given such samples we
do not get access to the autocovariance of the continuous
processX(t) from which we are sampling, but we can obtain
asymptotically unbiased estimates at lags that form integer
multiples of the sampling intervalts using the estimator

R̂X(nts) =
1
N

N−n∑

k=1

[
Xk − X̂N

] [
Xn+k − X̂N

]
, (35)

whereX̂N is the sample mean of the process.
This estimator is predicated on uniform sampling. Consider

its behaviour when Poisson sampling is applied. We shall do
so for a mean-zero sampled processX(Tk), in order to make
the analysis simple. For such a process denote our estimate
(not necessarily ofRX ) by

Q̂(n) =
1
N

N−n∑

k=1

X(Tk)X(Tn+k), (36)

then we can rearrange to find

E
[
Q̂(n)

]
=

1
N

N−n∑

k=1

E[R(Tn+k − Tk)]

=
1
N

N−n∑

k=1

∫ ∞

0

R(s)P{Tn+k − Tk = s} ds

=
1
N

N−n∑

k=1

∫ ∞

0

R(s)
λ(λs)n−1e−λs

(n− 1)!
ds, (37)

given thatTn+k − Tk is the sum ofn exponential RVs and
therefore distributed as an Erlang-n RV. Note that the terms
inside the summation do not depend onk, and so

E
[
Q̂(n)

]
=

N − n

N

∫ ∞

0

R(s)
λ(λs)n−1e−λs

(n− 1)!
ds. (38)

Clearly Q̂(n) may not be a good estimator ofRX(nts).
It is interesting to consider the case of Poisson sampling of

the M/M/1 queue. We shall do so by placing the approximation
to R(s), e.g., (25), for the M/M/1 queue into (38), such that
we get two integrals of the form

(
N − n

N

)
λσ2

2

∫ ∞

0

(λs)n−1e−(λ+A)s

(n− 1)!
ds

=
(

N − n

N

)
σ2

2
1

(1 + A/λ)n

→ σ2

2
exp(−An/λ), (39)

for large n and N . Hence we can see that for the M/M/1
queue, the Poisson sampled ACF approaches the true ACF in
the limit for a large number of samples, and large lags. See
Figure 5 below to see how close the approximation is in a real
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(a) Time domain estimates using the estimator (35).

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.2

0.4

0.6

0.8

1

1.2

lag (units of mean service time)

A
C

F

theoretical ACF
IFFT (uniform sampling)
IFFT (Poisson sampling)
LSP (Poisson sampling)

(b) Frequency domain estimates, obtained by taking the
periodogram and applying the inverse DFT.

Fig. 5. The estimated and theoretical ACF forρ = 0.95 and ts = 100. Vertical lines show 95th percentile confidence intervals.

case. In conjunction with the WK theorem (7), we can now see
why the standard periodogram reported in Figure 3 (a) (middle
plot) gives almost correct results for Poisson sampling. Given
the ACF is estimated reasonably using Poisson sampling, we
should expect the spectra to be equally correct.

The results show two things. Firstly, PASTA as a result is
not necessarily true for higher-order statistics of a process.
This is important to realize when we consider measurement
of statistics such as delay variation. In the M/M/1 case the
distortion is minimal, but could perhaps be larger for other
processes, though in general we might expect estimates for
very large lags to be reasonable, given higher-order Erlang
distributions tend towards a deterministic distribution.

To obtain a true estimate of the ACF we could use interpo-
lation of our original data set, but as before interpolation may
introduce unknown artifacts. Alternatively, we might bin the
time differencesti − tj and compute an approximation to the
autocovariance over such intervals. However, in this approach,
information is lost.

On the other hand, the WK theorem, which relates the spec-
tral density toWX(s), gives a method for computing the ACF
by applying an inverse FT to the periodogram [39]. Starting
from a LSP plotted with the standard range and resolution
for uniform sampling, we obtain estimates at discrete lags
ŴX(nts) (as we would with the time-domain estimator). We
can plot a LSP at higher frequencies, and with finer resolution
than the standard periodogram, resulting in finer resolution
when we produce the resulting ACF, however, note that the
same information is represented in the periodogram, and so
this represents a form of implicit interpolation [36].

There is one important detail to correct when applying the
inverse FT. As noted above, the FT of the sampled data is a
convolution of the signal of interest with the FT of the window
function. When we compute the periodogram, we take the
magnitude of this function, and the result is a distortion of the
spectra. The distortion is passed back to the time domain by
the inverse DFT and so the measured ACF will be

r̂(nts) = r̂X(nts)rg(nts), (40)

whererg is introduced by the sampling. This effect must be
removed to obtain̂rX(nts), by dividing through byrg(nts).

Figure 5 shows ACF results for various approaches to
estimation for a set of 30 simulated samples of the M/M/1
queue. The results use somewhat more samples (of the order
of 10,000), as we might expect when trying to estimate higher-
order moments of a process. Figure 5 (a) shows time-domain
estimates based on uniform and Poisson samples, including
95th percentile confidence intervals. We can see that over
the range plotted they are both reasonably close to the true
ACF, though note that (as described above) this is not a
guaranteed property of Poisson samples, but rather a property
that arises when sampling the M/M/1 queue. Figure 5 (b)
shows frequency domain estimates derived by estimating the
periodogram, and inverting. Three techniques are displayed,
the first two being based on the standard periodogram of both
uniform and Poisson samples to illustrate that these produce
almost identical results to their time domain equivalents. The
last is based on a LSP, and shows that we could estimate the
ACF using Poisson sampling.

A similar method (inverting spectra) can also be used to
derive cross-correlations for two sets of measurements [39].

C. Delay Variation

Delay variation (as defined by the IETF [25]) is intended to
capture a notion of the variability of delay measurements. A
possible application is the adaptive design of playout buffers,
which must buffer enough data so that even if some packets
are delayed a steady stream of data can be provided to
an application. RFC 3393 [25] specifies delay variation be
measured by examining differences in delays, i.e., we consider
the processYi = Xi−Xi−1. Such a process gives us some idea
of the variation of the delays. The RFC describes a number
of useful statistics of such measurements — we shall consider
its variance here, i.e., Var(Yi).

In the case of uniform sampling, the interpretation of this
metric is typically related to an application which sends traffic
at the same intervals as we sample. However, it should be
obvious from our discussion of correlations in queueing that
Var(Yi) depends on the sampling interval. In fact, we can
derive the variance explicitly in terms of the autocovariance
of X(t). First note that for a stationary processX(t)

E[Yi] = E[Xi]− E[Xi−1] = 0. (41)
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Now, given E[Yi] = 0

Var(Yi) = E
[
Y 2

i

]
= E

[
(Xi −Xi−1)2

]

= E
[
X2

i − 2XiXi−1 + X2
i−1

]

= 2 E
[
X2

i

]− 2 E[XiXi−1] . (42)

Let us further simplify (without loss of generality) to consider
Xi to be mean zero, and we see that

Var(Yi) = 2σ2
X − 2 E[R(Ti − Ti−1)] . (43)

For uniform sampling this reduces to

Var(Yi) = 2[σ2
X −R(ts)]. (44)

So clearly, for uniform sampling, the delay variation depends
on the sampling intervalts. It is therefore believed that to mea-
sure a delay-variation of relevance to a particular application,
that the measurements must be made at the same intervals as
the application’s traffic.

For Poisson sampled measurementsXi = X(Ti), and

E[R(Ti − Ti−1)] = λ

∫ ∞

0

R(s)e−sλ ds, (45)

resulting in different metrics for Poisson and uniform samples.
However, we can invert the LSP (with Poisson samples)

to derive an ACF for the delay measurements, and from
this, we could easily substitute values directly into (44) in
order to obtain an estimate of the delay variation for an
arbitrary sampling interval (whereas uniform sampling will
provide this only for a fixed sampling interval and integer
multiples thereof). Figure 6 shows a comparison of the direct
computation from uniform samples with estimates obtained
from inverting the LSP for Poisson samples obtained above.
We can see that both provide a reasonable approximation to
the true delay variation, and that the direct and LSP approaches
are statistically indistinguishable.
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Fig. 6. A comparison of the direct computation of delay variation from
uniform samples and estimates obtained from inverting the LSP for Poisson
samples for the M/M/1 queue withρ = 0.95, and ts = 100. Vertical lines
show 95% confidence intervals which overlap for both methods.

V. OTHER ISSUES

There are many other issues that impact the choice of
sampling used for performance measurements.

A. Sampling intervals

A common concern with random probes is that there may be
large gaps between some adjacent probes, and that we might
miss a particular event, or that an opportunist might somehow
exploit these gaps. Uniform sampling has a maximum time
between probests, and so provides guarantee of the maximum
duration event that can escape notice. However the lack of
anticipation property that forms the basis of PASTA prevents
anyone from exploiting the gaps between measurements, as
they cannot tell in advance where these will be. Furthermore,
it is worth considering that the probability of an inter-probe
time 100 times the mean time for a PSP is less than10−14.
Thus we will not observe such large gaps between probes.

In the case where the mean inter-probe times are already
large, then we may wish to limit the possible gaps a little more
stringently, and it may be appropriate to place a cap on the
inter-probe interval. ASTA will still apply as long as the lack of
anticipation property holds. A probe sequence with truncated
intervals will be more easily anticipated by an assailant, but is
unlikely to result in synchronization, and so we may find this
solution suitable in some cases. Furthermore, the LSP does
not depend on Poisson sampling.

Similar issues arise when we consider the fact that probe
packets have a minimum inter-probe times either because of
the probe generation mechanism, or the packet transmission
time for the probe packets.

B. Component performance

Another point of importance is the fact that a network is
really made up of many queues. PASTA applies to a system
as a whole, and so a single queueing model such as used here
may work for modelling end-to-end measurements of delay
through a series of queues. However, the sample sequences of
probes at each link in the network will not be Poisson. They
will be distorted by queueing with cross-traffic at previous
links. The PASTA property will therefore not hold at individual
components of an end-to-end path. Does this matter? Not
if we only consider end-to-end measurements. However, by
performing probes across a set of end-to-end paths, we can
form an inverse problem whose solution gives the performance
of the network at individual components (for example, see
[41] and the papers therein). PASTA will not hold for these
individual components, and so there is an apparent reliance on
the more general ASTA results.

C. Intractable measurements

Some measurements are intrinsically hard to make using
Poisson probes. For instance, reordering metrics are critically
dependent on the spacing between probe packets. Packets far
apart in time are very unlikely to be reordered. We could
model this via delays in multiple queues, and attempt to infer
reordering from Poisson samples, however, the estimate would
be highly dependent on how accurate a model was used.
Hence, for metrics such as this, uniform probing seems to
make more sense. On the other hand, the same affect noted
above — the distortion of probes away from their ideal probe
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stream at downstream links — also applies to uniform samples.
Hence, if the reordering occurs late along a probe path, the
samples will not be uniformly spaced, and the reordering
metric will not measure the same thing as it would were the
reordering happening early in the path. This seems to be a
difficulty in the notion of defining a reordering metric, rather
than the sampling method used.

VI. CONCLUSION

This paper has quantitatively compared differences be-
tween Poisson and uniform sampling for active performance
measurements, and more generally presented techniques for
understanding the properties of any sampling approach.

The key findings of the paper are:
• Poisson sampling results in a reduction in efficiency, and

hence more Poisson probes would be required to provide
estimates of the same statistical accuracy. However, the
reduction in efficiency is dwarfed by the natural variation
as a result of different system loads, and so this seems
not to be the major consideration.

• Irregular probes can be used to find time series properties
of a system, such as its periodogram, or ACF. Such
techniques could be used to detect periodicities in the
system, and warn of potential bias due to synchronization
(if pure Poisson sampling is not used).

It is clear that these findings do not rule out either sampling
approach. Rather a practitioner should choose the most appro-
priate measurements for their application, but this should be
a choice informed by the above results.
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