SNMP
Simple Network Measurements Please!

Matthew Roughan (+many others)
<roughan@research.att.com>
Outline

- Part I: SNMP traffic data
 - Simple Network Management Protocol
 - Why? How? What?

- Part II: Wavelets
 - What can you do?
 - Why not?

- Part III: Modeling
 - Putting time series and traffic modeling together
 - Traffic modeling deals with stationary processes (typically)
 - Time series gives us a way of getting a stationary process
 - But the analysis requires an understanding of the traffic model
Part I: SNMP Traffic Data
Data Availability - Traffic Data
Data Availability - packet traces

Packet traces limited availability
- special equipment needed (O&M expensive even if box is cheap)
- lower speed interfaces (only recently OC48 available, no OC192)
- huge amount of data generated
Flow level data not available everywhere
• historically poor vendor support (from some vendors)
• large volume of data (1:100 compared to traffic)
• feature interaction/performance impact
Data Availability - SNMP

SNMP traffic data
- MIB II (including IfInOctets/IfOutOctets) is available almost everywhere
- manageable volume of data
- no significant impact on router performance
SNMP

Advantages (MIB-II: IfInOctets/IfOutOctets)
- Simple, Easy, available anywhere that supports SNMP
- Relatively low volume
- It is used by operations already (lots of historical data)

Disadvantages
- Data quality
 - Ambiguous
 - Missing data
 - Irregular sampling
- Octets counters only tell you link utilizations
 - Hard to get a traffic matrix
 - Can't tell what type of traffic
 - Can't easily detect DoS, or other unusual events
- Coarse time scale (>1 minute typically)
 - Lack of well tested relationship between coarse time-scale averages and performance (hence active perf. measurement)
SNMP traffic data

Like an Odometer

SNMP Octets Counter

SNMP Polls
Irregularly sampled data

Why?
- Missing data (transport over UDP, often in-band)
- Delays in polling (jitter)
- Poller sync
 - Multiple pollers
 - Staggered polls

Why care?
- Time series analysis
- Comparisons between links
 - Did traffic shed from link A go to link B
 - Calculation of traffic matrices
- Totals (e.g. total traffic to Peer X)
- Correlation to other data sources
 - Did event BGP route change at time T effects links A,B,C,...
Applications

- **Capacity planning**
 - Network at the moment is “hand-crafted”
 - Want to automate processes
 - Provisioning for failure scenarios requires adding loads

- **Traffic engineering**
 - Even if done by hand, you need to see results
 - BGP

- **Event detection**
 - Operations are “fire-fighters”
 - Don’t care about events if they go away
 - Don’t see patterns

- **Business cases**
 - Help sales and marketing make cases
Part II: Wavelet Analysis

- Multi-scale
- Multi-resolution
Discrete Wavelet Transform

- Replace sinusoidal basis functions of FFT with wavelet basis functions
- Implementation in pyramidal filter banks

\[
\begin{align*}
X & \xrightarrow{\text{LP FIR}} \downarrow 2 \xrightarrow{\text{HP FIR}} \downarrow 2 \\
& \quad \xrightarrow{\text{LP FIR}} \downarrow 2 \xrightarrow{\text{HP FIR}} \downarrow 2 \\
& \quad \xrightarrow{\text{LP FIR}} \downarrow 2 \xrightarrow{\text{HP FIR}} \downarrow 2 \\
& \quad \xrightarrow{\text{LP FIR}} \downarrow 2 \\
\end{align*}
\]

\[
d(1,:) \\
d(2,:) \\
d(3,:) \\
a(3,:) \\
\]
Dyadic grid

- no redundancy, no loss of information
- Each frequency/scale examined at a resolution matched to its scale
Dyadic grid: smoothing

- Zero the fine scale details and reconstruct
Dyadic grid: compression

- Keep the coefficients above some threshold
What can you do with wavelets

- Compression
- Smoothing/interpolation
- Anomaly detection/identification
 - DoS
 - Flash crowds
- Multiple dimensional analysis of data
- LRD/self-similarity analysis
Example: compression
Example: compression (by averaging)

1 hour averages

bit rate

Wed Thu Fri Sat

time
Example: compression (Haar)

Haar wavelet compression

![Graph showing bit rate over time with peaks on Thursday and Friday.](image-url)
Example: compression (Daubechie’s)

Daubechie’s wavelet compression

bit rate

Wed Thu Fri Sat

time

AT&T Labs - Research
Example: interpolation

- Wavelet based
Example: anomaly detection

- Wavelet based
Wavelets, wavelets everywhere and not a ...

- Parameter tuning
 - How do know it will work next time?

- Scale of dyadic grid doesn’t match patterns in data
 - 5 minute measurements
 - 24 hour cycle, 7 day cycle
 - But dyadic grid is in powers of 2
 - CWT looses many of the advantages of DWT

- Example
 - Compression
 - Look for parameters/wavelet that don’t loose important data
 - What is the important data?

- If we had a model it could tell us what is important
 - Compress => estimate model parameters => test difference
Part III: Modeling

- Putting together theory from
 - Time series analysis
 - Traffic theory

- To SNMP data
 - In particular for backbone traffic
Total traffic into a city for 2 weeks

Total traffic: 07-May-2001 (GMT)

Total traffic: 08-May-2001 (GMT)
Model

Traffic data has several components

- Trend, T_t
 - Long term changes in traffic
- Seasonal (periodic) component, S_t
 - Daily and weekly cycles
- Stationary stochastic component, W_t
 - Normal variation
- Transient anomalies, I_t
 - DoS, Flash crowds, Rerouting (BGP, link failures)

many ways you could combine these components

- standard time series analysis
 - Sum $X_t = T_t + S_t + W_t + I_t$
 - Product $X_t = T_t S_t W_t I_t$
 - Box-Cox transform
A Simple Model (for backbone traffic)

- Based on Norros model
- Non-stationary mean
- Stochastic component unspecified (for the moment)

\[
x_t = m_t + \sqrt{am_t} W_t + I_t
\]

\[
m_t = T_t S_t
\]
Why this model?

- Behaves as expected under multiplexing

\[
\begin{align*}
 x &= \sum_{i} x_i \\
 m &= \sum_{i} m_i \\
 a &= \frac{\sum_{i} m_i a_i}{\sum_{i} m_i}
\end{align*}
\]

- Good model for backbone traffic
 - Lots of multiplexing

- Simple, estimable parameters, flexible, can make predictions, data supports it
What does a model get you?

Decomposition
- MA for trend (window > period of seasonal component)
- SMA for seasonal component (average at same time of day/week)
- Several methods for segmenting \(I_t \)

Interpolation
- Linear, or wavelet based for short gaps (<3 hours)
- Model based for long gaps (>3 hours)

Understanding of the effect of multiplexing
- Should be understood
 - People still seem to misunderstand
- How smooth is backbone traffic (is it LRD)

Capacity planning
Example: decomposition

Data => Decomposition

Diagram showing a time series with trends, seasonal patterns, and stochastic components.
Example: interpolation

- Model based vs linear

![Graph showing model-based vs linear interpolation]

- The graph compares linear, spline, and model-based interpolation methods. The y-axis represents the percentage of relative error, and the x-axis represents the length of missing data (hours).

- The linear method shows a steady increase in error as the length of missing data increases.

- The spline method has a fluctuating trend with a spike at the beginning and a gradual increase later.

- The model method maintains a relatively low error throughout the simulation.
Conclusion

- **SNMP is a good data source**
 - Available everywhere
 - You need to do some work to extract useful data
 - There is still more info. to get (packet traces, flow data, ...)

- **Wavelets are a flexible tool for extracting info**
 - Not always obvious how to set parameters

- **Traffic model gives you a little more**
 - A framework for other algorithms
 - A way to decide what information is important
 - A way of seeing how smooth traffic really is
 - Effect of multiplexing

- **Algorithms are applicable to other traffic data**