Information, Gravity, and Traffic Matrices

Yin Zhang, Matthew Roughan, Albert Greenberg, Nick Duffield, David Donoho
Problem

Have link traffic measurements
Want to know demands from source to destination
Example App: reliability analysis

Under a link failure, routes change
want to find an invariant
Outline

Part I: What do we have to work with – data sources
- SNMP traffic data
- Netflow, packet traces
- Topology, routing and configuration

Part II: Algorithms
- Gravity models
- Tomography
- Combination and information theor

Part III: Applications
- Network Reliability analysis
- Capacity planning
- Routing optimization (and traffic engineering in general)
Traffic Data
Data Availability - packet traces

Packet traces limited availability – like a high zoom snap shot
- special equipment needed (O&M expensive even if box is cheap)
- lower speed interfaces (only recently OC48 available, only just OC192)
- huge amount of data generated
Data Availability - flow level data

Flow level data not available everywhere – like a home movie of the network
- historically poor vendor support (from some vendors)
- large volume of data (1:100 compared to traffic)
- feature interaction/performance impact
Data Availability - SNMP

SNMP traffic data – like a time lapse panorama
- MIB II (including IfInOctets/IfOutOctets) is available almost everywhere
- manageable volume of data (but poor quality)
- no significant impact on router performance
Part II: Algorithms
The problem

Only measure at links

Want to compute the traffic y_j along route j from measurements on the links, x_j

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 1 \\
 1 & 1 & 0 \\
 0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3
\end{pmatrix}
\]
The problem

Want to compute the traffic t_j along route j from measurements on the links, x_i

$$x = A^T y$$
Naive approach

In real networks the problem is highly under-constrained
Gravity Model

Assume traffic between sites is proportional to traffic at each site

\[y_1 \propto x_1 x_2 \]
\[y_2 \propto x_2 x_3 \]
\[y_3 \propto x_1 x_3 \]

Assumes there is no systematic difference between traffic in LA and NY

- Only the total volume matters
- Could include a distance term, but locality of information is not as important in the Internet as in other networks
Simple gravity model

![Graph showing simple gravity model with scatter plot and trend lines.](image)
Generalized gravity model

- Internet routing is asymmetric
- A provider can control exit points for traffic going to peer networks
Generalized gravity model

- Internet routing is asymmetric
- A provider can control exit points for traffic going to peer networks
- Have much less control of where traffic enters
Generalized gravity model
Tomographic approach

- Solve the constraints

\[x = A^T y \]
Direct Tomographic approach

- Under-constrained problem
- Find additional constraints
- Use a model to do so
 - Typical approach is to use higher order statistics of the traffic to find additional constraints
- Disadvantage
 - Complex algorithm - doesn’t scale
 - ~1000 routers
 - Can reduce size of problem (by looking at the core)
 - Still orders more routers than PoPs
 - Model may not be correct \(\rightarrow\) result in problems

- Alternative: use the gravity model
Combining gravity model and tomography

- In general there aren't enough constraints
- *Constraints give a subspace of possible solutions*
Solution

- Find a solution which
 - Satisfies the constraint
 - Is close to the gravity model (in some sense)
Validation

- Results good: ±20% bounds for larger flows
- Observables even better
- Robust
- Fast
Distribution of flow sizes
Estimates over time
Information Theory

natural relationship to information theory

- Max entropy:
 - maximize uncertainty given a set of constraints

- Minimum Mutual Information:
 - minimize the mutual information between source and destination

- No information
 - The minimum is independence of source and destination
 - $P(S,D) = p(S) \cdot p(D)$
 - $P(D|S) = P(D)$
 - actually this corresponds to the gravity model

- Add tomographic constraints:
 - Including additional information as constraints
 - Natural algorithm is one that minimizes the Kullback-Liebler information number of the $P(S,D)$ with respect to $P(S) \cdot P(D)$
 - Max relative entropy (relative to independence)

- provides a natural distance for us in the previous algorithm
 - Quadratic distances are a linear approximation to the KL distance
Insights

- Gravity model = independence of source and destination
 - Generalized gravity model = independence conditional on class of the source and destination
 - Can now rigorously derive this model
- There is a natural distance metric for this problem
- The solution can now be seen as showing “how far” we are from the gravity model in a probabilistic sense
- We can quantify the distance of the solution from any particular model - e.g. general vs simple gravity model
 - Provides a direct method for testing quality of priors, independent of algorithm used to get solution
 - For example, choice model prior used by SprintLab
- We know how to add in additional information rigorously
 - Isolated netflow
 - Local traffic matrices
Part III: Applications
Existing Applications

- **Network Reliability Analysis**
 - Consider the link loads in the network under failure
 - Allows “what if” type questions to be asked about link failures (and span, or router failures)
 - Allows comprehensive analysis of network risks
 - What is the link most under threat of overload under likely failure scenarios
 - Used in Planned Cable Intrusions (PCIs)

- **Capacity planning**
 - Results have been used in backbone capacity planning
 - Since Oct 2002 (in conjunction with other data)
Routing optimization

- Used with OSPF optimization
 - Get within 6% of OSPF optimum using true TM
 - Get within 12% of absolute best (e.g. using MPLS)

- Has been used on a more limited basis, in connection with reliability analysis
 - OSPF weights computed by trial and error
 - Aim: prevent negative impact from failures
 - Concern in 2002 over three large links in a shared risk group
Conclusion

- Nice algorithm
 - Connection with transport theory
 - Connection with information theory

- Practical applications
 - Network reliability
 - Capacity planning
 - Routing optimization

- To Do
 - Build better prior models
 - Study the traffic matrices themselves
 - Point-to-multipoint traffic matrices
 - Other applications
 - Anomaly detection
Additional slides
Netflow Measurements

- Detailed IP flow measurements
 - Flow defined by
 - Source, Destination IP,
 - Source, Destination Port,
 - Protocol,
 - Time
 - Statistics about flows
 - Bytes, Packets, Start time, End time, etc.
 - Enough information to get traffic matrix

- Semi-standard router feature
 - Cisco, Juniper, etc.
 - not always well supported
 - potential performance impact on router

- Huge amount of data (500GB/day)
SNMP

Pro

- Comparatively simple
- Relatively low volume
- It is used already (lots of historical data)

Con

- Data quality - an issue with any data source
 - Ambiguous
 - Missing data
 - Irregular sampling
- Octets counters only tell you link utilisations
 - Hard to get a traffic matrix
 - Can’t tell what type of traffic
 - Can’t easily detect DoS, or other unusual events
- Coarse time scale (>1 minute typically; 5 min in our case)
Topology and configuration

- **Router configurations**
 - Based on downloaded router configurations, every 24 hours
 - Links/interfaces
 - Location (to and from)
 - Function (peering, customer, backbone, ...)
 - OSPF weights and areas
 - BGP configurations

- **Routing**
 - Forwarding tables
 - BGP (table dumps and route monitor)
 - OSPF table dumps

- **Routing simulations**
 - Simulate IGP and BGP to get routing matrices
Validation
Some Approaches

- **Look at a real network**
 - Get SNMP from links
 - Get Netflow to generate a traffic matrix
 - Compare algorithm results with “ground truth”
 - Problems:
 - Hard to get Netflow along whole edge of network
 - If we had this, then we wouldn’t need SNMP approach
 - Actually pretty hard to match up data
 - Is the problem in your data: SNMP, Netflow, routing, ...

- **Simulation**
 - Simulate and compare
 - Problems
 - How to generate realistic traffic matrices
 - How to generate realistic network
 - How to generate realistic routing
 - Danger of generating exactly what you put in
Our method

- We have netflow around part of the edge (currently)
- We can generate a partial traffic matrix (hourly)
 - Won’t match traffic measured from SNMP on links
- Can use the routing and partial traffic matrix to simulate the SNMP measurements you would get
- Then solve inverse problem
- Advantage
 - Realistic network, routing, and traffic
 - Comparison is direct, we know errors are due to algorithm not errors in the data