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C∗-Algebras in Tensor Categories

Peter Bouwknegt, Keith C. Hannabuss, and Varghese Mathai

Abstract. We define and systematically study nonassociative C∗-algebras as
C∗-algebras internal to a topological tensor category. We also offer a concrete
approach to these C∗-algebras, as G-invariant, norm closed ∗-subalgebras of
bounded operators on a G-Hilbert space, with deformed composition product.
Our central results are those of stabilization and Takai duality for (twisted)

crossed products in this context.

1. Introduction

In [12] we gave an account of some nonassociative algebras and their appli-
cations to T-duality, with a brief mention of the role of categories at the end. In
this paper we will develop the theory more systematically from the category the-
oretic perspective. In particular we shall not need to assume that the groups are
abelian, and will mostly work with general three-cocycles rather than antisymmet-
ric tricharacters. We believe, however, that the results in this paper are of interest
independent of our original motivation. Since writing [12] we have become aware
of more of the large literature in this subject, for example, the work of Fröhlich,
Fuchs, Runkel, Schweigert in conformal field theory [22, 23, 24, 25, 26, 27], and
of Beggs, Majid and collaborators [1, 2, 4, 5, 6, 14]. Most of that work is al-
gebraic in spirit, working with finite groups or finite dimensional Hopf algebras,
whereas we are primarily interested in locally compact groups and C∗-algebras,
which necessitate the development of a rather different set of techniques. The work
of Nesterov and collaborators [35, 36, 37, 38, 39] does use vector groups, but
has rather different aims and methods. In addition, there is a well-established the-
ory of C∗- and W∗-categories, [28, 34], in which the algebras are generalised to
morphisms in a suitable category, which means that they are automatically asso-
ciative. One could generalise to weak higher categories, but the examples discussed
in [12] suggest that one starts by looking at categories in which the algebras and
their modules are objects, which is also more directly parallel to the algebraic cases
already mentioned.
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In Section 2 we introduce the tensor categories that we use and give some
elementary examples, based on our earlier work in [12]. Within the category it
is possible to define algebras and modules. The next three sections show how to
obtain nonassociative algebras of twisted compact and bounded operators on a
Hilbert space, and introduce Morita equivalence. We then link this to exterior
equivalence in Section 6, which establishes that exterior equivalent twisted actions
give rise to isomorphic twisted crossed product C∗-algebras.

Section 7 is devoted to an extension of the nonassociative Takai duality proved
in [12]. This is especially useful, because it provides a method of stabilising al-
gebras. For example, an associative algebra with a very twisted group action has
a nonassociative dual and double dual which admit ordinary untwisted group ac-
tions. The double dual is Morita equivalent to the original, and so one could replace
the original associative algebra and twisted action by an equivalent nonassociative
algebra and ordinary action.

The main result in Section 8 establishes the fact that twisted crossed prod-
ucts can be obtained by repeated ordinary crossed products, but with a possible
modified automorphism action of the final subgroup, a result that goes a long way
towards proving an analog of the Connes-Thom isomorphism theorem [15, 16] in
our context, as briefly discussed in the final section.

A theorem of MacLane [34] asserts that every monoidal category can be made
strict, that is, associative, but in general the functor which does this is quite compli-
cated. However, in our category things are much simpler, and in Appendix A, it is
shown that whenever a nonassociative algebra acts on a module, its multiplication
can be modified to an associative multiplication. Examples of the strictification
process are discussed there, in particular to the algebras of twisted compact and
bounded operators which are defined to act on a module, but also have more seri-
ous implications for physics, where the algebras are generally represented by actions
on modules. (On the other hand this does not mean that we can simply dismiss
the nonassociativity, because there are known nonassociative algebras such as the
octonions, cf. [3], which fit into our framework.) Appendix B gives a concrete ap-
proach to our nonassociative C∗-algebras, as G-invariant, norm closed ∗-subalgebras
of bounded operators on a G-Hilbert space, with composition product deformed by
a 3-cocycle on G. In Appendix C, we revisit the construction of our nonassociative
torus, via a geometric construction that realizes it as a nonassociative deforma-
tion of the C∗-algebra of continuous functions on the torus. For completeness, we
have summarized in Appendix D, the original motivation for this work, namely,
T-duality in string theory.
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2. Tensor categories and their algebras

As in [29] we use tensor category to mean just a monoidal category, without
any of the other structures often assumed elsewhere. That is, a tensor category is a
category in which associated to each pair of objects A and B there exists a product
object A ⊗ B, and there is an identity object 1, such that 1 ⊗ A ∼= A ∼= A ⊗ 1,
together with associator isomorphisms

(2.1) Φ = ΦA,B,C : A⊗ (B ⊗ C) → (A⊗B)⊗ C

for any three objects A, B and C, satisfying the consistency pentagonal identity on
quadruple products:

A⊗ (B ⊗ (C ⊗D))
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with each arrow the appropriate map Φ, and the triangle relation:

A⊗ (1⊗ B)
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A⊗B

MacLane’s coherence theorem ensures that these conditions are sufficient to guaran-
tee consistency of all other rebracketings, [30]. (The theorem proceeds by showing
that one can always take the category to be a strictly associative category. We
prove this explicitly for our examples in Appendix A)

Module categories provide two standard examples of tensor categories with the
obvious identification map Φ = id. One is the category of R-modules and R-
morphisms, for R a commutative algebra over C. The appropriate tensor product
of objects A and B is A⊗RB, and the identity object is R itself. Continuous trace
algebras with spectrum S are C0(S)-modules, and so can be studied within this
category with R = C0(S), though some care is needed in defining the appropriate
tensor products in the case of topological algebras, but this can be done explicitly
in this case, cf. [40, Sect 6.1].
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A subtly different example is provided by the algebra of functionsH = C0(G) on
a separable locally compact group G. As well as being an algebra under pointwise
multiplication it also has a comultiplication Δ : H → H ⊗ H taking a function
f ∈ C0(G) to (Δf)(x, y) = f(xy), and a counit ε : H → C, which evaluates f at the
group identity. This enables us to equip the category of H-modules with a tensor
product A ⊗ B over C, on which f acts as Δ(f), and the identity object being C

with the trivial H-action of multiplication by ε(f). Writing the comultiplication in
abbreviated Sweedler notation Δf = f(1) ⊗ f(2), the action on A⊗B is

f [a � b] = f(1)[a] � f(2)[b].

Since everything has been defined in terms of the comultiplication and counit of
H, this clearly generalises to bialgebras, and even to quasi-bialgebras. If G is an

abelian group, with Pontryagin dual group ̂G = Hom(G,U(1)), then we can work

with C∗(̂G) instead of C0(G), and the tensor product action of ξ ∈ ̂G is just ξ ⊗ ξ.

If the group ̂G acts on S, the two examples can be combined in the category of

modules for the crossed product, or transformation groupoid, algebra C0(S) � ̂G,
equipped with the tensor product over C0(S), and identity object C0(S).

Both examples use modules for a ∗-algebra, with f∗(s) = f(s) in C0(S) and

f∗(x) = f(x−1) in C0(G), and the category contains conjugate objects A∗, having
the same underlying set, but with the algebra action changed to that of f∗ and
conjugated scalar multiplication. For a an element of some object A and a∗ the
same element considered as an element of A∗ we then have f∗[a∗] = f [a]∗. Working

with C∗(̂G) instead of C0(G) one has ξ(x−1) = ξ(x) so that ξ∗ = ξ. This too can be
generalised to quasi-Hopf algebras [29, Section XV.5] which provide such structure
as do the coinvolutions in Kac C∗-algebras. Conjugation A �→ A∗ preserves direct
sums and gives a covariant functor. Another crucial property follows by noting that
in C0(G) one has

Δ(f∗)(x, y) = f∗(xy) = f(y−1x−1) = Δ(f))(y−1, x−1) = (f∗
(2) ⊗ f∗

(1))(x, y),

so that conjugation reverses the order of factors in the tensor product. There is a
natural isomorphism between (A⊗B)∗ and B∗⊗A∗. Since preparing the first draft
of this paper the preprint [6] has appeared and gives a systematic account of bar
categories, of which these form one example. We refer the reader there for more
detail.

Tensor categories have enough structure to define algebras and modules.

Definition 2.1. An object A is an algebra (or monoid) in a tensor category
if there is a morphism � : A ⊗ A → A that is associative in the category, that
is, �(� ⊗ id)Φ = �(id ⊗ �) as maps A ⊗ (A ⊗ A) → A. An algebra A in the
category is called a ∗-algebra if the category has the above conjugation of objects
and A∗ = A. A left (respectively, right) module M for A is an object such that
there is a morphism, which we also denote by �, sending A⊗M to M (respectively,
M ⊗ A to M), and satisfying the usual composition law in the category, that is,
for left modules �(�⊗ id)Φ = �(id × �) as maps A⊗ (A⊗M) → M. For brevity,
the term module will mean a left module, unless otherwise specified. An A-B-
bimodule X for two algebras A and B in the category is a left module for A and a
right module for B, with commuting actions (allowing for rebracketing given by an
associator map).
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As an example we note that continuous trace algebras with spectrum S are

algebras in the category of C0(S)-modules introduced above. In fact C0(S) can
be identified with a subalgebra of the centre ZM(A) of the multiplier algebra of a
continuous trace algebra A, and so it also acts on all A-modules, so that A-modules
in the ordinary sense are also A-modules in the category. Similarly, continuous

trace algebras with spectrum S on which ̂G acts as automorphisms are algebras

in the category of C0(S) � ̂G-modules. Although we have so far taken Φ to be
the usual identification map, there are other possibilities. Let G be a separable

locally compact group with dual ̂G, and let φ ∈ C(G × G × G) be normalised to
take the value 1 whenever any of its arguments is the identity 1 ∈ G, and satisfy
the pentagonal cocycle identity

(2.2) φ(x, y, z)φ(x, yz, w)φ(y, z, w) = φ(xy, z, w)φ(x, y, zw) .

Since C(G) is the multiplier algebra of C0(G) it also acts on C0(G)-modules. Unlike
the algebraic case there are various module tensor products, and it is assumed that
we have chosen one for which the action of C(G)⊗ C(G)⊗ C(G) is defined.

Definition 2.2. The category CG(φ) has for objects normed C0(G)-modules,

or equivalently normed ̂G-modules, and its morphisms are continuous linear maps
commuting with the action. The tensor structure comes from taking the tensor
product of modules with the tensor product action of the coproduct (Δf)(x, y) =

f(xy) for f ∈ C(G), (or diagonal tensor product action ξ ⊗ ξ of ξ ∈ ̂G). For any
three objects A, B and C the associator map, Φ : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C is
given by the action of φ ∈ C(G×G×G) ∼= C(G)⊗C(G)⊗C(G). The identity object

is the trivial one-dimensional module C, on which ̂G acts trivially, or, equivalently,
f ∈ C(G) multiplies by f(1), where 1 is the identity element in G.

We could introduce a similar structure for C0(S)� ̂G modules.
As already mentioned, the algebras (or monoids) in CG(φ) are objects A for

which there is a product morphism A⊗A → A, which we shall write as a⊗b �→ a�b.
An algebra A can have a module M, when there is a morphism A⊗M → M, which
we also write a⊗m �→ a � m, relying on the context to distinguish multiplications
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from actions. The category structure forces interesting compatibility conditions on
algebras and modules.

Proposition 2.3. Let A be an algebra in the category CG(φ). Then the group
̂G acts on an algebra A by automorphisms, and the action of ̂G on an A-module

M gives a covariant representation of A and ̂G or, equivalently, a representation of

the crossed product A� ̂G.

Proof. For a, b ∈ A, and ξ ∈ ̂G we have ξ[a] � ξ[b] = ξ[a � b], showing that the

action of ̂G is by endomorphisms, and since ̂G is a group, these are invertible, and
so automorphisms.

The morphism property gives ξ[a]�ξ[m] = ξ[a�m], showing that the actions of

A and ̂G combine into a covariant representation of (A, ̂G). Standard theory then

tells us that this is equivalent to having an action of the crossed product A� ̂G. �

We need to take care concerning the ordering of products where Φ sets up the
appropriate associativity conditions. When A is an algebra in the category, and
M is an A-module, we shall simplify the notation by writing Φ(a � (b �m)) for the
composition of the maps Φ : A⊗ (A⊗M) → (A⊗A)⊗M and the multiplications
and action

(A⊗A)⊗M → A⊗M → M ,

applied to a⊗(b⊗c), and similarly for triple products of algebra elements. We shall
similarly abbreviate the notation for other operations involving tensor products.

The algebra of twisted compact operators Kφ(L
2(G)), introduced in [12], pro-

vides an example of an algebra in the category CG(φ). There we assumed that φ
was an antisymmetric tricharacter, that is, φ(x, y, z) is a character in each of its
arguments for fixed values of the others, and is inverted by any transposition of
its arguments. This is sufficient to ensure that it satisfies the cocycle identity, but
at the expense of slightly more complicated formulae the cocycle condition usually
suffices, for example the product of two integral kernels is defined by

(2.3) (k1 � k2)(x, z) =

∫

φ(xy−1, yz−1, z)k1(x, y)k2(y, z) dydz .

The action of f ∈ C(G) on Kφ(L
2(G)) multiplies the kernel K(x, y) by f(xy−1), and

one checks that this defines an automorphism using the identity (Δf)(xy−1, yz−1) =
f(xz−1). Moreover, as may be readily checked using the pentagonal identity:

((k1 � k2) � k3))(x,w)(2.4)

=

∫

φ(xy−1, yz−1, z)φ(xz−1, zw−1, w)k1(x, y)k2(y, z)k3(z, w) dydz

=

∫

φ(xy−1, yz−1, zw−1)φ(xy−1, yw−1, w)φ(yz−1, zw−1, w)

× k1(x, y)k2(y, z)k3(z, w) dydz

= Φ(k1 � (k2 � k3))(x,w) .(2.5)

In Appendix B the twisted compact operators Kφ(L
2(G)), introduced in [12],

and the twisted bounded operators Bφ(L
2(G)) are systematically defined and stud-

ied, providing examples of C∗-algebras in the category CG(φ). In fact, any norm
closed, G-invariant �-subalgebra of Bφ(L

2(G)) gives an example of a C∗-algebra in
the category. The reworking of the twisted compact operators and twisted bounded
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operators with a general cocycle φ shows that the arguments of [12] need not depend
on φ being a tricharacter, although there may be simplifications when it is.

Proposition 2.4. Let λ : A ⊗ (B ⊗ C) → C be a morphism in CG(φ). If φ is
a tricharacter then λ(Φ(a ⊗ (b ⊗ c))) = λ(a ⊗ (b ⊗ c)), for all a ∈ A, b ∈ B and
c ∈ C. The same applies for a morphism λ : A ⊗ (B ⊗ C) → A ⊗ C → A which
factors through C.

Proof. The fact that λ is a morphism means that for any f ∈ C0(G)

ε(f)λΦ = λ(id⊗Δ)Δ(f))Φ = λ(f(1) ⊗ (f(2) ⊗ f(3)))φ ,

or
λε(f)Φ = λ(f(1) ⊗ (f(2) ⊗ f(3)))φ ,

Thus the effect of (f(1)⊗ (f(2)⊗f(3)))φ(x, y, z) = f(x(yz))φ(x, y, z) is just the same
as ε(f)φ(x, y, z) = f(1)φ(x, y, z). In other words, the effect of λΦ is concentrated
where xyz = 1. However, when φ is an antisymmetric tricharacter, it takes the
value 1 when arguments are repeated, and so

φ(x, y, z) = φ(x, y, x)φ(x, y, y)φ(x, y, z) = φ(x, y, xyz) = 1.

In other words λΦ = λ. A similar argument applied to B⊗C covers the case when
λ factors through C.

We conclude by remarking that in the abbreviated notation introduced above,
one would write λ(Φ(a⊗ (b⊗ c))) = λ(a⊗ (b⊗ c)). �

More generally C(G) can be replaced by other algebras. To give the desired
structure we require at least a comultiplication Δ to define a tensor product action,
a linear functional ε satisfying ε(h1)h2 = h = h1ε(h2) defining the action on the
identity object, and a three-cocycle Φ in the multiplier algebra M(H ⊗ H ⊗ H),
consistent with these. The pentagonal cocyle condition is

(2.6) (Δ⊗ id⊗ id)(Φ)(id⊗ id⊗Δ)(Φ) = (Φ⊗ id)(id⊗Δ⊗ id)(Φ)(id⊗ Φ) .

Consistency of the associativity rebracketing with the action of H on tensor products
of modules requires

(2.7) (Δ⊗ id)Δ(h) = adΦ(id⊗Δ)Δ(h) ,

whilst consistency with the action on the identity object means that ε contracted
with the middle part of Φ gives the identity. These are precisely the conditions
satisfied by a quasi-bialgebra [29, Section XV.1].

Definition 2.5. The objects in the category CH(Φ) are H-modules, and the
morphisms are linear H-endomorphisms, with the associator map given by the ac-
tion of Φ ∈ H⊗H⊗H. The action on tensor products is given by the comultiplication
and the trivial object is C with the action given by the counit.

The quasi-bialgebra version of Proposition 2.3 asserts that H acts by auto-
morphisms of an algebra A in the category, that is, h[a � b] = h(1)[a] � h(2)[b], for
all a, b ∈ A, and the actions of H and A on an A-module are covariant, so that
h[a � m] = h(1)[a] � h(2)[m], for all m ∈ M, and one has a module for the crossed
product A� H.

We shall often use H to include the case of C(G), though in the latter case there
are extra analytic conditions. (In principle one might use Kac algebras, [20, 21],
but that would require too big a digression.)
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We shall outline our results for topological groups (more directly linked to our
applications) and for quasi-Hopf algebras.

We shall work in tensor categories of modules for an appropriate locally com-
pact abelian group (more directly linked to our applications) or for a quasi-Hopf
algebra (which makes the algebraic structure particularly transparent), though it
is probably possible to extend much of this to tensor categories of modules for Kac
algebras [20, 21], which provide a natural framework for considerations of duality.
Even locally compact groups present challenges beyond those present in the purely
algebraic case of Hopf algebras, for example, the algebra C0(G) of compactly sup-
ported functions on G has no unit, since the constant function 1 is not compactly
supported, whilst L∞(G) has no counit since evaluation at the identity is not de-
fined, and in neither case is there an antipode, though both have a coinvolution as
Kac C∗-algebras. One also requires modules which are not finitely generated.

3. Hilbert modules in tensor categories

The notion of the twisted kernels on L2(G) can be extended to more general
Hilbert spaces. There are several equivalent characterisations of the bounded op-
erators in a normal Hilbert space, and for our purposes the most useful approach
is rather indirect.

Let H be a ̂G-module with an inner product 〈·, ·〉. Since the inner product

takes values in the trivial object C, consistency with the action of ̂G requires that

〈ξ[ψ1], ξ[ψ2]〉 = ξ[〈ψ1, ψ2〉] = 〈ψ1, ψ2〉, for all ξ ∈ ̂G and ψ1, ψ2 ∈ H, so that the ̂G
action is unitary, or equivalently 〈ψ1, f [ψ2]〉 = 〈f∗[ψ1], ψ2〉 for all f ∈ C(G).

Definition 3.1. An object H in CG(φ) with an inner product 〈·, ·〉 with respect

to which the action of ̂G is unitary (or, equivalently, consistent with the ∗-structure
of C(G)) is called a pre-Hilbert space in CG(φ). If it is complete in the norm topology
it is called a Hilbert space in CG(φ).

The unitarity of the action of ̂G means that the inner product on H defines a
morphism from the conjugate space H∗ introduced earlier to the dual of H given
by ψ∗ = 〈ψ, ·〉. We can alternatively think of an inner product as a morphism
H∗ ⊗H → C, written ψ∗

1 ⊗ ψ2 �→ 〈ψ1, ψ2〉, which satisfies the positivity condition.

Proposition 3.2. In order that the map taking A to A∗ be consistent with the
associator isomorphism it is necessary and sufficient that

(3.1) Φ(A⊗ (B ⊗ C))∗ = Φ−1((A⊗ (B ⊗ C))∗) ,

for all objects A, B and C, or, equivalently in CG(φ), that the φ be unitary.

Proof. We have

Φ(A⊗ (B ⊗ C))∗ = ((A⊗B)⊗ C)∗

= C∗ ⊗ (B∗ ⊗A∗)

= Φ−1((C∗ ⊗B∗)⊗A∗)

= Φ−1((A⊗ (B ⊗ C))∗),

which amounts to saying that the function φ∗ = φ−1, so that φ is unitary. �
In ordinary Hilbert spaces bounded operators can be characterised as those

that are adjointable, and this definition is easy to generalise.
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Definition 3.3. Modifying the usual definition we shall call a linear operator
A on H adjointable if for all ψ1 and ψ2 ∈ H there is an operator A� such that

〈A � ψ1, ψ2〉 = Φ(〈ψ1, A
� � ψ2〉),

where the ordering on each side is that given by the order-reversing conjugation,
that is, the two sides are images of (ψ∗

1 ⊗ A∗) ⊗ ψ2 and Φ(ψ∗
1 ⊗ (A� ⊗ ψ2)) under

the module action and inner product map.

We note that this definition is taken to mean that A and A� are in a ∗-algebra
with a module H. The unitarity of the action means that the ordinary bounded
operators are objects in the category with the action ξ[A] = ξ ◦ A ◦ ξ−1. The
equality of the images of (ψ∗

1 ⊗ A∗) ⊗ ψ2 and Φ(ψ∗
1 ⊗ (A� ⊗ ψ2)) allows us to

identify the adjoint A� with the conjugate A∗. We note that the unique action of ̂G
consistent with the covariance property gives ξ : A �→ ξ ◦A ◦ ξ−1. When Φ is given
by an antisymmetric tricharacter φ we may apply Proposition 2.4 to the morphism
λ(ψ1⊗(A⊗ψ2)) = 〈ψ1, A � ψ2〉 to deduce that Φ acts trivially and the condition for
the adjoint reduces to 〈A�ψ1, ψ2〉 = 〈ψ1, Aψ2〉, as usual. In this case the adjointable
operators are therefore just the bounded operators on H. For general φ one will
have a natural generalisation of the bounded operators, the subject of the next
section.

4. Twisted compact and twisted bounded operators

Regarding H as a right C-module for the scalar multiplication action, Rieffel’s
method allows us to define the dual inner product 〈〈·, ·〉〉 such that

〈〈ψ0, ψ1〉〉 � ψ2 = Φ(ψ0 � 〈ψ1, ψ2〉).
(As usual when φ is an antisymmetric tricharacter, as in [12], the invariance of the
inner product renders the Φ action trivial, so that Φ(ψ0 � 〈ψ1, ψ2〉) = ψ0 � 〈ψ1, ψ2〉.)

In the associative case the dual inner products 〈〈ψ0, ψ1〉〉 span the algebra K(H)
of compact operators, and in the nonassociative case we define the norm-closure of
the span to be the twisted compact operators Kφ(H). The dual inner product is

not generally invariant under the action of ̂G. Indeed, we have

(4.1) 〈〈ξ[ψ0], ξ[ψ1]〉〉 � ξ[ψ2] = ξ[ψ0 � 〈ψ1, ψ2〉] ,
from which it follows that 〈〈ξ[ψ0], ξ[ψ1]〉〉 = ξ ◦ 〈〈ψ0, ψ1〉〉 ◦ ξ−1. This means that
there is a new multiplication � on Kφ(H), so that, for K1,K2 ∈ K(H), ψ ∈ H,

(4.2) (K1 � K2) � ψ = Φ(K1 � (K2 � ψ)) ,

where the right hand side is just the iterated natural action of Kφ(H) on H.

Lemma 4.1. The compact operators in Kφ(H) are automatically adjointable
with 〈〈ψ2, ψ1〉〉 being the adjoint of 〈〈ψ1, ψ2〉〉.

Proof. This is proved by consideration of 〈〈ψ0, 〈ψ1, ψ2〉 � ψ3〉〉 for ψj ∈ H,
j = 0, 1, 2, 3. To keep the orderings clearer we write Hj = H, j = 0, . . . , 3, and
think of ψj ∈ Hj , so that the vectors involved in the inner product

ψ∗
0 ⊗ ((ψ1 ⊗ ψ∗

2)⊗ ψ3) ∈ H∗
0 ⊗ ((H1 ⊗H∗

2)⊗H3).

Rewriting 〈〈ψ1, ψ2〉〉 � ψ3 = Φ(ψ1 � 〈ψ2, ψ3〉), is just a rebracketing, and with three
more such steps we can rebracket it as (H∗

0 ⊗ (H1 ⊗H∗
2))⊗H3, which differs from
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the original by a single rebracketing, and so by just one application of Φ (by the
pentagonal identity). We also have

(H∗
0 ⊗ (H1 ⊗H∗

2))
∼= ((H1 ⊗H∗

2)
∗ ⊗H0)

∗ ∼= ((H2 ⊗H∗
1)⊗H0)

∗,

from which we see that the adjoint of 〈〈ψ1, ψ2〉〉 is 〈〈ψ2, ψ1〉〉. �

The associative case suggests that the multiplier algebra of the twisted compact
operators should be a twisted version of the bounded operators, but we can be more
explicit.

Definition 4.2. The twisted bounded operators Bφ(H) are the adjointable

operators, equipped with the ̂G action given by ξ ·A = ξ ◦A ◦ ξ−1, and the twisted
multiplication given, for A,B ∈ Bφ(H) and ψ ∈ H, by

(4.3) (A � B) � ψ = Φ(A � (B � ψ)) .

Lemma 4.3. If A and B are adjointable then so is A�B and (A�B)∗ = B∗�A∗.
Thus the adjointable operators with this multiplication form a (generally nonasso-
ciative) ∗-algebra of twisted bounded operators Bφ(H). The twisted compact op-
erators Kφ(H) are an ideal in Bφ(H) (and so, in particular, Kφ(H) is a subalge-
bra). When φ is an antisymmetric tricharacter the twisted bounded operators are
bounded operators but with a different multiplication. In that case, when H = L2(G)

with the multiplication action of ̂G, ξ[ψ](x) = ξ(x)ψ(x), then Kφ(H) is the algebra
Kφ(L

2(G)) defined in [12].

Proof. This time we consider 〈ψ1, (A � B) � ψ2〉, which arises from

ψ∗
1 ⊗ ((A⊗B)⊗ ψ2) ∈ H∗ ⊗ ((AA ⊗AB)⊗H),

where the indices on A just serve as reminders of where operator lives. Similar
rebracketings to those in the previous lemma

ψ∗
1 ⊗ ((A⊗B)⊗ ψ2) → ψ∗

1 ⊗ (A⊗ (B ⊗ ψ2)) → (ψ∗
1 ⊗A)⊗ (B ⊗ ψ2) →

→ ((ψ∗
1 ⊗ A)⊗B)⊗ ψ2 → (ψ∗

1 ⊗ (A⊗B))⊗ ψ2 ,

give us an element of (H∗ ⊗ (A⊗A))⊗H. Moreover,

H∗ ⊗ (AA ⊗AB) ∼= ((A∗
B ⊗A∗

A)⊗H)∗,

from which it follows that

〈(B∗ � A∗) � ψ1, ψ2〉 = Φ(〈ψ1, (A � B) � ψ2〉),

so that B∗ � A∗ = (A � B)∗. This proves that A � B is adjointable, and allows us
to form an algebra. In the associative case it is totally straightforward to see that
K(H) is an ideal because, for any A ∈ B(H) and ψ0, ψ1, ψ2 ∈ H, we have

(A � 〈〈ψ0, ψ1〉〉) � ψ2 = A � (ψ0〈ψ1, ψ2〉) = 〈〈A � ψ0, ψ1〉〉 � ψ2,

showing that A� 〈〈ψ0, ψ1〉〉 = 〈〈A � ψ0, ψ1〉〉. Similarly 〈〈ψ0, ψ1〉〉 �A = 〈〈ψ0, A
∗ � ψ1〉〉,

from which it is obvious that left and right multiplication preserve the generators
of K(H). In the nonassociative case, there are several rebracketings involved but,
thanks to the pentagonal identity these reduce to

〈〈A � ψ0, ψ1〉〉 = Φ(A � 〈〈ψ0, ψ1〉〉).
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The right hand side is
∫

φ(x, y, z)ξ(x)η(y)ζ(z)〈〈ξ[A] � η[ψ0], ζ[ψ1]〉〉 dxdydz dξdηdζ,

and this is in the closure Kφ(H) of the span of the dual inner product.
We have already seen that when φ is an antisymmetric tricharacter the ad-

jointable operators are the same as usual, that is, the bounded operators. The
argument of Proposition 2.4 applied to λ(ψ0 ⊗ (ψ1 ⊗ ψ2)) = ψ0〈ψ1, ψ2〉 shows that
Φ also disappears from the formula for the dual inner product in this case; for
H = L2(G) with the natural inner product we get the same rank one operators
defined by the dual inner product as when φ = 1, that is, the ordinary compact op-
erators, which are the closure of the kernels Cc(G×G), and only the multiplication
changes. More precisely we see that

(〈〈ψ0, ψ1〉〉 � ψ2)(x) = Φ(ψ0(x)〈ψ1, ψ2〉) = ψ0(x)

∫

G

φ(x, y, y)ψ1(y)ψ2(y) dy,

so that for an antisymmetric tricharacter 〈〈ψ0, ψ1〉〉(x, y) = ψ0(x)ψ1(y). It is straight-
forward to check that multiplication follows from the formula of [12, Sect 5]. �

Corollary 4.4. The twisted bounded operators form a ∗-algebra in CG(φ) with
A� identified with A∗.

It is no coincidence that the same space B(H) can carry both associative and
nonassociative multiplications, as one can see from the discussion of strictification
in Appendix A.

We have thus shown that the twisted bounded operators are closed under
twisted multiplication, without deriving any simple relationship between the norm
of A�B and those of A and B. In particular we do not have the C∗-algebra identity
‖A� � A‖ = ‖A‖2. However, there is a simple substitute for this.

Proposition 4.5. For any A in the algebra of twisted bounded operators Bφ(H),
A� � A = 0 if and only if A = 0.

Proof. It is clear that A = 0 implies A� � A = 0. Conversely, for any ψ,
〈Aψ,Aψ〉 is obtained from 〈ψ, (A� � A)ψ〉 by the appropriate actions of Φ. Since
these are linear, when A� � A = 0 we must also have 〈Aψ,Aψ〉 = 0, and this forces
A = 0. �

Definition 4.6. A C∗-algebra in CG(φ) is a ∗-algebra which is ∗-isomorphic
to a norm-closed ∗-subalgebra of Bφ(H) for some Hilbert module H. (Here ∗-
isomorphisms are defined as usual except that they must also be CG(φ)-morphisms.)

5. Morita equivalence

In Section 2 we defined bimodules in a category, but we now want to study
them in a little more detail.

Definition 5.1. Let X be a right A-module for A a C∗-algebra in CG(φ), and
let X ∗ denote the conjugate left A-module. An A-valued inner product on X is a
morphism X ∗×X → A, written ψ∗

1 ⊗ψ2 �→ 〈ψ1, ψ2〉R, such that for all ψ1, ψ2 ∈ X ,
and b ∈ A,

(i) Φ(〈ψ1, ψ2 � b〉R) = 〈ψ1, ψ2〉R�b, where Φ is given by the action of a cocycle
φ on G;
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(ii) 〈ψ1, ψ1〉R is positive in A, in the sense that it can be written as a sum of
elements of the form b�j � bj with bj ∈ A, and vanishes only when ψ1 = 0.
One calls X a (right) Hilbert A-module.

Remark. Assumptions (i) and (ii) are consistent because a series of rebrack-
etings and uses of (i) gives

〈ψ � b, ψ � b〉R → b� � (〈ψ, ψ〉R � b) = b� � ((
∑

b�j � bj) � b),

and undoing the various rebracketings takes us back to the obviously positive term
∑

j

(bj � b)
� � (bj � b).

This argument is slightly more delicate than one might realise, but as a morphism
in the category the inner product must satisfy

f [〈ψ1, ψ2〉R] = 〈f∗
1 [ψ1], f2[ψ2]〉R,

as do products f [b�j � bj ] = f∗
1 [b

�
j ] � f2[bj ], so that the various actions of φ on the

inner product and on the algebra products really do match each other. This was
the reason for taking this definition of positive rather than the other possibilities,
such as having positive spectrum, which are equivalent in the associative case, but
undefined or less useful here.

Proposition 5.2. For all ψ1 and ψ2 ∈ X we have 〈ψ1, ψ2〉R = 〈ψ2, ψ1〉�R.

Proof. The polarisation identity gives

〈ψ1, ψ2〉R =

3
∑

r=0

i−r〈ψ1 + irψ2, ψ1 + irψ2〉 =
3

∑

r=0

ir〈irψ1 + ψ2, i
rψ1 + ψ2〉

and, since property (ii) tells that the inner product is real, this is the same as
〈ψ2, ψ1〉�R. �

Obviously ordinary Hilbert spaces when A = C, and ordinary Hilbert C∗-
modules (when G is trivial), provide examples. Any C∗-algebra A, considered as
an A-A-bimodule for the left and right multiplication actions, can be given the
A-valued inner product 〈a1, a2〉A = a∗1a2. This is certainly bilinear on A∗ ×A and
for the action by automorphisms one has

f [〈a1, a2〉R] = f [a∗1a2] = f1[a
∗
1]f2[a2] = 〈f∗

1 [a1], f2[a2]〉R.
The inner product is obviously positive, and Proposition 4.5 ensures that a� �a = 0
if and only if a = 0. This example can be combined with a Hilbert space H to
obtain H⊗A with the A-valued inner product

〈ψ1 ⊗ a1, ψ2 ⊗ a2〉R = 〈ψ1, ψ2〉a∗1a2,
compatible with the (right) action of A by right multiplication.

One can similarly define A-valued inner products for left A-modules, either as
the conjugate of the right A-module X ∗, or directly as follows.

Definition 5.3. Let X be a left A-module for A a C∗-algebra in CG(φ), and
let X ∗ denote the conjugate left A-bimodule. An A-valued inner product on X is a
morphism X ×X ∗ → A, written ψ∗

1 ⊗ψ2 �→ 〈ψ1, ψ2〉L, such that for all ψ1, ψ2 ∈ X ,
and a ∈ A,
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(i) Φ1(〈a � ψ1, ψ2〉L) = a � 〈ψ1, ψ2〉L, where Φ1 is given by the action of a
cocycle φ1 on G1;

(ii) 〈ψ1, ψ1〉L is positive in A, in the sense that it can be written as a sum of
elements of the form a�j � aj with aj ∈ A, and vanishes only when ψ1 = 0.
One calls X a (left) Hilbert A-module.

As with the A-valued inner product a polarisation argument shows that 〈ψ1, ψ2〉L =
〈ψ2, ψ1〉�L.

Returning to right Hilbert C∗-modules, the next task is to study the algebra of
adjointable operators a on X which commute with the action of C(G) and admit
an adjoint a� satisfying

(5.1) 〈a � ψ, θ〉R = Φ〈ψ, a� � θ〉R .

Examples are provided by rank one operators

〈ψ0, ψ1〉L : ψ2 �→ Φ[ψ0 � 〈ψ1, ψ2〉R],
where Φ = Φ1 × Φ2.

All this suggests an abstraction of this structure into the idea of an imprimi-
tivity A1-A2-module X .

Definition 5.4. Let X be an A1-A2-bimodule, for Aj a C∗-algebra in CG(φ),
j = 1, 2, such that the actions of (̂G,A1) and (̂G,A2)are mutually commuting, and
each generates the commutant of the other. Let X have A1 and A2-valued inner
products, such that each algebra is adjointable in the inner product associated with
the other:

(5.2) 〈a � ψ1, ψ2〉R = Φ〈ψ1, a
� � ψ2〉R, 〈ψ1, ψ2 � b〉L = Φ〈ψ1 � b

�, ψ2〉L .

In addition one asks that the inner products are full in the sense that their images
are dense in A1 and A2, respectively, and linked by the imprimitivity condition
that each is dual to the other,

(5.3) 〈ψ0, ψ1〉L � ψ2 = Φ(ψ0 � 〈ψ1, ψ2〉R) .
Then X is said to be an imprimitivity bimodule for A1 and A2.

We have defined bimodules within a single category CG(φ), but this is easily
extended to cover bimodules X for C∗-algebras A1 and A2 in different tensor cat-
egories, CG1

(φ1) and CG2
(φ2), (where G1, G2 are separable locally compact abelian

groups with three-cocycles φ1 and φ2). We take G = G1 × G2 with the product
cocycle φ = φ1 × φ2, and then CG1

(φ1) forms a subcategory of CG(φ) on which
C(G2) acts trivially (by its counit, ε2), and similarly with indices reversed. Within
CG(φ) there is no problem in taking an A1-A2-bimodule X , which as a left module
is in CG1

(φ1), and as a right module in CG2
(φ2). In particular, when G2 is trivial,

one can use the bimodule to compare modules for twisted and untwisted algebras
(cf. [12]).

As with Hilbert spaces, when φ1 and φ2 are antisymmetric tricharacters the
rebracketing which links the dual inner products is independent of Φ.

Lemma 5.5. In the case of Aj in category CGj
(φj), described above, when φ1

and φ2 are antisymmetric tricharacters the inner products are linked by

(5.4) 〈ψ0, ψ1〉L � ψ2 = ψ0 � 〈ψ1, ψ2〉R .
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Proof. This follows from Proposition 2.4, since the inner product ψ∗
1 ⊗ψ2 �→

〈ψ1, ψ2〉R is a C0(G1)-morphism, so that Φ1 acts trivially on the terms involving
this, and ψ1 ⊗ ψ∗

2 �→ 〈ψ1, ψ2〉L is a C0(G2)-morphism, so that Φ2 acts trivially on
the terms involving that. By rewriting the equation linking the inner products as

Φ−1
2 (〈ψ0, ψ1〉L � ψ2) = Φ1(ψ0 � 〈ψ1, ψ2〉R),

we see that each Φj acts trivially, so that

〈ψ0, ψ1〉L � ψ2 = ψ0 � 〈ψ1, ψ2〉R.
�

Definition 5.6. Two C∗-algebras A1 and A2 are said to be Morita equivalent
if there exists an imprimitivity A1-A2-bimodule.

Theorem 5.7. Morita equivalence is an equivalence relation.

Proof. Reflexivity follows by using A with the inner product 〈a1, a2〉 = a∗1a2
as an imprimitivityA-A-bimodule. Symmetry follows by replacing anA-B-bimodule
X , by the conjugate B-A-bimodule X ∗, equipped with the dual inner product.

To prove transitivity, suppose that X and Y are imprimitivity A-B- and B-C-
bimodules, respectively, and set Z = X ⊗BY . Certainly Z is an A-C-bimodule, and
it may be equipped with dual inner products as follows. The right inner product is
obtained from the following composition of maps

(Y∗⊗X ∗)⊗(X⊗Y) → Y∗⊗(X ∗⊗(X⊗Y)) → Y∗⊗((X ∗⊗X )⊗Y) → Y∗⊗(B⊗Y)

→ Y∗ ⊗ Y → C ,

where the first two maps are given by the appropriate associator Φ, the third is
the right inner product on X , the next is the action of B on Y , and the last is the
right inner product on Y . The end result is 〈y1, 〈x1, x2〉R � y2〉R, and this actually
factors through X ⊗B Y . For example, the associator gives a map

〈x1, x2 � b〉R � y2 → 〈x1, x2〉R � (b � y2)

so that the composition depends only on x2 ⊗B y2. That will also apply for the
other argument and so one really has a map Z∗⊗Z → C. The map is a morphism,
because

〈f∗
(1)[y1], 〈f∗

(2)[x1], f(3)[x1]〉R � f(4)[y2]〉R = 〈f∗
(1)[y1], f(2)[〈x1, x2〉R] � f(3)[y2]〉R

= 〈f∗
(1)[y1], f(2)[〈x1, x2〉R � y2]〉R

= f [〈y1, 〈x1, x2〉R � y2〉R].
The positivity follows from the positivity of the inner products on X and Y , ex-
ploiting the fact that exactly the same rebracketings occur for the inner products
and for sums of the form

∑

j b
�
j � bj .

The left inner product Z ⊗Z∗ → A is similarly obtained from the composition
of the following maps:

(X⊗Y)⊗(Y∗⊗X ∗) → X⊗(Y⊗(Y∗⊗X ∗)) → X⊗((Y⊗Y∗)⊗X ∗) → X⊗(B⊗X ∗)

→ X ⊗X ∗ → A ,

and its properties similarly checked. �
We saw at the end of the previous section that X = H is an imprimitivity

Kφ(H)-C-bimodule.
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Theorem 5.8. The twisted compact operators Kφ(H) are Morita equivalent
to C, with H providing the bimodule which gives the equivalence, and shows that
Kφ(H) has trivial representation theory.

Now Kφj
(Hj) is Morita equivalent to C via the bimodule Hj for any Hilbert

space Hj and twistings φj , so, by the symmetry and transitivity of the equivalence,
Kφ1

(H1) and Kφ2
(H2) are Morita equivalent via the bimodule H1⊗CH∗

2 = H1⊗H∗
2.

6. Exterior equivalence for nonassociative algebras

The nonassociative algebras appear in [12] as twisted crossed products of or-
dinary associative algebras, when one had to lift an outer automorphism. In this
section we return to that situation.

In the case of a Dixmier-Douady class on a principal T-bundle E described by
a de Rham form along the fibres, there is a homomorphism from T to the outer
automorphism group of an algebra A with spectrum E. This is lifted to a map
α : T → Aut(A) with

(6.1) αxαy = ad(u(x, y))αxy ,

and

(6.2) u(x, y)u(xy, z) = φ(x, y, z)αx[u(y, z)]u(x, yz) .

Any other lifting β would have the form

(6.3) βx[a] = ad(wx)αx[a] ,

for suitable wx ∈ A, and

(6.4) βxβy = ad(v(x, y))βxy .

For trivial u and v this is just the usual exterior equivalence.

Lemma 6.1. If βx = ad(wx)αx then βxβy = ad(v(x, y))βxy with

(6.5) v(x, y) = c(x, y)wxαx[wy]u(x, y)w
−1
xy ,

for some central c(x, y), and this is the most general form of v.

Proof. For consistency, we must have

ad(v(x, y)wxy)αxy[a] = ad(wx)αx[ad(wy)αy[a]]

= ad(wxαx[wy])[αxαy[a]]

= ad(wxαx[wy]u(x, y))[αxy[a]],

so that we must have

v(x, y)wxy = c(x, y)wxαx[wy]u(x, y) ,

for some central c(x, y). �

For genuine representations when u and v are identically 1, this reduces to the
usual requirement for exterior equivalence,

(6.6) wxy = wxαx[wy] .

We can now prove the following result well known in the algebraic context.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

142 P BOUWKNEGT, KC HANNABUSS, AND V MATHAI

Lemma 6.2. Different liftings of an outer automorphism give cohomologous
cocycles φ, that is, cocycles differing by a coboundary

(6.7) (dc)(x, y, z) =
c(x, y)c(xy, z)

c(x, yz)c(y, z)
.

Proof. In general, we can now calculate that

v(x, y)v(xy, z)

= c(x, y)c(xy, z)wxαx[wy]u(x, y)w
−1
xy wxyαxy[wz]u(xy, z)w

−1
xyz

= c(x, y)c(xy, z)wxαx[wy]u(x, y)αxy[wz]u(xy, z)w
−1
xyz

= c(x, y)c(xy, z)wxαx[wy]αxαy[wz]u(x, y)u(xy, z)w
−1
xyz

= φ(x, y, z)c(y, z)c(x, yz)wxαx[wyαy[wz]u(y, z)]u(x, yz)w
−1
xyz

= (φ.dc)(x, y, z)c(y, z)c(x, yz)wxαx[wyαy[wz]u(y, z)w
−1
yz ]αx[wyz]u(x, yz)w

−1
xyz

= (φ.dc)(x, y, z)wxαx[v(y, z)]w
−1
x v(x, yz)

= (φ.dc)(x, y, z)βx[v(y, z)]v(x, yz),

showing that u and v have cohomologous cocycles φ and φ.dc. �

Theorem 6.3. The crossed product algebras A �α,u G and A �β,v G, with
βx = ad(wx)αx and v(x, y)wxy = wxαx[wy]u(x, y), are isomorphic.

Proof. The product of f, g ∈ A�β,v G is given by

(f �β,v g)(x) =

∫

f(y)βy[g(y
−1x)]v(y, y−1x) dy

=

∫

f(y)wyαy[g(y
−1x)]w−1

y v(y, y−1x) dy

=

∫

f(y)wyαy[g(y
−1x)wy−1x]u(y, y

−1x)w−1
x dy,

so that we may set fw(x) = f(x)wx to get

(f �β,v g)w(x) = (fw �α,u gw)(x),

and similar calculations on f∗ confirm that f �→ fw is the required isomorphism. �

So, up to isomorphism, the twisted crossed product depends only on the outer
automorphism group, and a matching multiplier. The choice of v does matter, since
even when u = 1 the crossed product is not usually isomorphic to a twisted crossed
product. In fact, if we take φ = dc, the composition of twisted compact operators
is given by

(K1 � K2)(x, z)(6.8)

=

∫

K1(x, y)K2(y, z)dc(xy
−1, yz−1, z) dy(6.9)

=

∫

K1(x, y)K2(y, z)c(xy
−1, yz−1)c(xz−1, z)c(xy−1, y)−1c(yz−1, z)−1 dy

= c(xz−1, z)

∫

K1(x, y)c(xy
−1, y)−1K2(y, z)c(yz

−1, z)−1c(xy−1, yz−1) dy .
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This can be rewritten in terms of Kc
1(x, y) = K1(x, y)c(xy

−1, y)−1 as

(6.10) (K1 � K2)
c(x, z) =

∫

Kc
1(x, y)K

c
2(y, z)c(xy

−1, yz−1) dy ,

showing that the new multiplication is still twisted. Indeed, it is obtained by
applying the untwisted multiplication to the image of K1 ⊗ K2 under the action
of c ∈ C(G)⊗ C(G). Even such slightly deformed products can have very different
differential calculi, as investigated by Majid and collaborators (particularly the
recent preprint [14]).

We now define two automorphism groups with algebra-valued cocycles (α, u)
and (β, v) to be exterior equivalent if

(6.11) βx = ad(wx)αx, and v(x, y) = wxαx(wy)u(x, y)w
−1
xy .

These can be rewritten as

(6.12) αx = ad(w−1
x )βx, and u(x, y) = βx(w

−1
y )w−1

x v(x, y)wxy ,

demonstrating the reflexivity of the equivalence, and similarly the product of the
algebra elements gives transitivity.

We now can easily rephrase (and shorten) the derivation of Packer–Raeburn
equivalence [12, Cor 4.2]. The cocycle equation for u can be written as

u(x, y)u(xy, y−1x−1z) = φ(x, y, y−1x−1z)αx[u(y, y
−1x−1z)]u(x, x−1z).

We now work in A⊗K(L2(G)) which acts on a ∈ A⊗ L2(G). We define

(wxa)(z) = u(x, x−1z)a(x−1z),

and βx = ad(wx)αx and use the above version of the cocycle identity to show that
(α, u) is exterior equivalent to (β, v) with (v(x, y)a)(z) = φ(x, y, y−1x−1z)a(z).

7. The general duality result

In this section we generalise the construction at the end of Section 6 to general
C∗-algebras with twisted actions.

Theorem 7.1. Let B be a C∗-algebra on which the group G acts by twisted
automorphisms βg, with twisting given by v(x, y), satisfying the deformed cocycle

condition with tricharacter obstruction φ. The twisted crossed product (B�β,vG)�̂G
is isomorphic to the algebra of B- valued twisted kernels B ⊗ Kφ(L

2(G)) with the
product

(7.1) (k1 � k2)(w, z) =

∫

G

k1(w, u)k2(u, z)φ(wu
−1, uz−1, z)−1 du .

The double dual action on (B �β,v G)� ̂G is equivalent to

(7.2) (
̂

̂βykF )(w, z) = φ(wz−1, z, y)ad(Vy)
−1[βy[kF (wy, zy)]] ,

which is the product of the original action βy and a twisted adjoint action of

(7.3) Vy(z) =
φ(y, z−1, z)

φ(yz−1, zy−1, y)
v(y, z−1) ,

on B-valued kernels.
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Proof. The twisted crossed product B �β,v G consists of B-valued functions
on G with product

(f ∗ g)(x) =
∫

G

f(y)βy[g(y
−1x)]v(y, y−1x) dy,

and (B �β,v G)� ̂G consists of B-valued functions on G× ̂G with product

(F ∗G)(x, ξ) =

∫

̂G

(F (., η)̂βη[G(., η−1ξ)])(x) dη

=

∫

̂G×G

F (y, η)βy
̂βη[G(y−1x, η−1ξ)]v(y, y−1x) dydη

=

∫

̂G×G

F (y, η)βy[η(y
−1x)G(y−1x, η−1ξ)])v(y, y−1x) dydη.

We now Fourier transform with respect to the second argument, so that

̂F (x, z) =

∫

̂G

F (x, ξ)ξ(z) dξ,

to get

(F̂ ∗G)(x, z) =

∫

F (y, η)βy[η(y
−1x)G(y−1x, η−1ξ)])v(y, y−1x)ξ(z) dydηdξ

=

∫

F (y, η)η(y−1xz)βy[G(y−1x, η−1ξ)(η−1ξ)(z))]v(y, y−1x) dydηdξ

=

∫

G

̂F (y, y−1xz)βy[ ̂G(y−1x, z)]v(y, y−1x) dy.

Next we introduce ̂kF (w, z) = βw−1 [ ̂F (wz−1, z)]v(w−1, wz−1) and by setting w =
xz in the last product formula, applying βw−1 , and using the standard identities
for v and φ, we obtain

̂kF∗G(w, z) = βw−1 [F̂ ∗G)(wz−1, z)]v(w−1, wz−1)

=

∫

G

βw−1 [ ̂F (y, y−1w)]βw−1βy[ ̂G(y−1wz−1, z)]βw−1 [v(y, y−1wz−1)]v(w−1, wz−1) dy

=

∫

G

βw−1 [ ̂F (y, y−1w)]v(w−1, y)βw−1y[ ̂G(y−1wz−1, z)]

× v(w−1y, y−1wz−1)φ(w−1, y, y−1wz−1) dy

=

∫

G

̂kF (w, y
−1w)̂kG(y

−1w, z)φ(w−1, y, y−1wz−1) dy

=

∫

G

̂kF (w, u)̂kG(u, z)φ(w
−1, wu−1, uz−1) du.

Now, by the cocycle identity

φ(w−1, wu−1, uz−1) =
φ(u−1, uz−1, z)φ(w−1, wu−1, u)

φ(wu−1, uz−1, z)φ(w−1, wz−1, z)
,

from which it follows that with kF (w, u) = ̂kF (w, u)φ(w
−1, wu−1, u) we have

kF∗G(w, z) =

∫

G

kF (w, u)kG(u, z)φ(wu
−1, uz−1, z)−1 du.

Thus we have an isomorphism with B-valued twisted kernels B ⊗ Kφ(L
2(G)).
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We can also compute that the double dual (untwisted) action of y ∈ G takes

F (x, ξ) to ξ(y)F (x, ξ). Integrating against ξ(z) we see that this takes ̂F (x, z) to
̂F (x, zy), and so ̂kF to

(
̂

̂βy
̂kF )(w, z) = βw−1 [ ̂F (wz−1, zy)]v(w−1, wz−1)

= βy(wy)−1)[ ̂F ((wy)(zy)−1, zy)]v(w−1, wz−1)

= ad(v(y, (wy)−1))−1βyβ(wy)−1 [ ̂F ((wy)(zy)−1, zy)]v(w−1, wz−1)

= v(y, (wy)−1)−1βy[̂kF (wy, zy)v((wy)
−1, wz−1)−1]v(y, (wy)−1)v(w−1, wz−1)

= v(y, (wy)−1)−1βy[̂kF (wy, zy)]βy[v((wy)
−1, wz−1)]−1v(y, (wy)−1)v(w−1, wz−1)

= v(y, (wy)−1)−1βy[̂kF (wy, zy)]φ(y, (wy)
−1, wz−1)−1v(y, (zy)−1).

This in turn, with a couple of applications of the pentagonal identity, gives the

following expression for (
̂

̂βykF )(w, z):

φ(w−1, wz−1, z)φ(y−1w−1, wz−1, zy)−1φ(y, (wy)−1, wz−1)−1v(y, (wy)−1)−1

× βy[kF (wy, zy)]v(y, (zy)
−1)

=
φ(w−1, wz−1, z)

φ(w−1, wz−1, zy)

φ(y, y−1z−1, zy)

φ(y, y−1w−1, wy)
v(y, (wy)−1)−1βy[kF (wy, zy)]v(y, (zy)

−1)

= φ(wz−1, z, y)
φ(w−1, w, y)

φ(y, y−1w−1, wy)
v(y, (wy)−1)−1βy[kF (wy, zy)]v(y, (zy)

−1)

× φ(y, y−1z−1, zy)

φ(z−1, z, y)
= φ(wz−1, z, y)ad(Vy)

−1βy[kF (wy, zy)],

where Vy is defined in the Theorem. This is the product of the original action
βy, and a twisted action on B-valued kernels, which combines the original action
βy with an adjoint action of Vy, and an action on kernels of the type discussed in
[12, Sect 5]. (Two actions α and β linked by an inner automorphism adu can be
removed by an exterior equivalence.) �

As a consequence of this result we can, when convenient, replace an algebra
B with twisted action by a (stable) nonassociative algebra B ⊗ Kφ(L

2(G)) with an
ordinary action.

Since the arguments are now quite general they could also be used to show
that the third dual is isomorphic to the first dual tensored with ordinary compact
operators.

8. Twisted and repeated crossed products

The standard Takai duality theorem can be seen from a different perspective

by identifying the repeated crossed product (A � G) � ̂G with the twisted crossed

product A � (G ×σ
̂G), where the twisting is done by the Mackey multiplier σ on

G × ̂G given by σ((y, η), (x, ξ)) = η(x). (For G = R, every multiplier is equivalent
to a Mackey multiplier.) In fact the crossed product A � G consists of A-valued
functions a, b, on G with product

(8.1) (a ∗ b)(x) =
∫

G

a(y)αy[b(y
−1x)] dy ,
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with ̂G-action (α̂ξ[a])(x) = ξ(x)a(x), and the repeated crossed product similarly

consists of functions from G×σ
̂G to A with product

(8.2) (a ∗ b)(x, ξ) =
∫

a(y, η)η(y−1x)αy[b(y
−1x, η−1ξ)] dydη .

Now a twisted crossed product given by a projective action β of G×σ
̂G would have

product

(8.3) (a ∗ b)(x, ξ) =
∫

a(y, η)β(y,η)[b(y
−1x, η−1ξ)]σ((y, η), (y−1x, η−1ξ)) dydη ,

and we see that these match if β(y,η) = αy and σ((y, η), (x, ξ)) = η(x). The duality
theorem then follows from Green’s results on imprimitivity algebras and the fact

that the twisted group algebra of G ×σ
̂G is essentially the algebra of compact

operators on L2(G).
This equivalence between a twisted crossed product and a repeated (untwisted)

crossed product has an analogue when the twisting is done with a three-cocycle,
which can be exploited in reverse, to reinterpret the twisted crossed product as a
repeated crossed product. We take two exterior equivalent twisted automorphism

groups (β, v) and (̂β, v̂) of a C∗-algebra A:

(8.4) ̂βx = ad(wx)βx, and v̂(x, y) = wxβx(wy)v(x, y)w
−1
xy .

Both v and v̂ define the same three-cocycle φ, which we shall assume to be an
antisymmetric tricharacter, so that when trivial it is identically 1.

Theorem 8.1. For a separable locally compact abelian group G and a sta-
ble C∗-algebra A, let β : G → Aut(A) be a twisted homomorphism with βξβη =
ad(v(ξ, η))βξη, for all ξ, η ∈ G. Suppose that G = G1 × G2, where Gj has trivial
Moore cohomology H3(Gj ,U(1)). Suppose that the corresponding three-cocycle φ is
identically 1 on G1 and is also 1 when two of its arguments are in G2 (this being
true for antisymmetric tricharacters on R2 ×R). Then we may take v to be trivial

on the subgroups Gj and (β, v) is exterior equivalent to (̂β, v̂), where

(8.5) ̂βxX = βxβX , and v̂(xX, yY ) = βx[ṽ(X, y)]

where lower case letters denote elements of G1 and capitals elements of G2, and
ṽ(X, y) = v(X, y)v(y,X)−1. The cocycle ṽ satisfies

ṽ(XY, z) = βX [ṽ(Y, z)]ṽ(X, z), and

ṽ(X, yz) = φ(X, y, z)−3ṽ(X, y)βy[ṽ(X, z)] ,(8.6)

and v̂ defines the three-cocycle ϕ(xX, yY, zZ) = φ(X, y, z)3.

Proof. Since φ = 1 on the subgroups, the stabilisation theorem ([12, Cor4.2]
and below) tells us that we may also take v to be 1 on the subgroups. It follows from

the definitions that ̂βxX = ad(v(x,X))βxX , so that we could take wxX = v(x,X).
In fact it is more convenient to make a slightly different choice since we also have

βξβη = v(ξ, η)βξη = ad(ṽ(ξ, η))βηβξ,

from which we deduce

(βxβX)(βyβY ) = βx(βXβy)βY

= βxad(ṽ(X, y))βyβXβY
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= ad(βx[ṽ(X, y)])ad(v(x, y))βxyad(v(X,Y ))βXY .

Since the cocycle v̂ is determined up to scalars, and v(x, y) = 1, v(X,Y ) = 1 on the
subgroups, this gives us the required form v̂(xX, yY ) = βx[ṽ(X, y)]. Alternatively
we can see that up to scalar factors wxXβxX [wyY ]v(xX, yY )w−1

xyXY is

βx[ṽ(X, y)]v(x, y)βxy][v(X,Y )] = βx[ṽ(X, y)]

using the triviality of the restriction of v to the subgroups. Now, we also have

v(XY, z) = φ(X,Y, z)v(X,Y )−1βX [v(Y, z)]v(X,Y z)

= φ(X,Y, z)v(X,Y )−1βX [ṽ(Y, z)]φ(X, z, Y )−1v(X, z)v(Xz, Y )

= φ(X,Y, z)φ(X, z, Y )−1v(X,Y )−1

× βX [ṽ(Y, z)]ṽ(X, z)φ(z,X, Y )βz[v(X,Y )]v(z,XY ) ,

and using the triviality of v on subgroups, and the fact that φ must be trivial
whenever two of its arguments are in G2, this reduces to

ṽ(XY, z) = βX [ṽ(Y, z)]ṽ(X, z).

Similarly, we have

βX [v(y, z)]v(X, yz) = φ(X, y, z)−1v(X, y)v(Xy, z)

= φ(X, y, z)−1φ(y,X, z)ṽ(X, y)βy[v(X, z)]v(y,Xz)

= φ(X, y, z)−1φ(y,X, z)ṽ(X, y)βy[ṽ(X, z)]φ(y, z,X)−1v(y, z)v(yz,X) ,

and using the triviality of v on subgroups as well as the antisymmetry of φ this
reduces to

ṽ(X, yz) = φ(X, y, z)−3ṽ(X, y)βy[ṽ(X, z)].

We then have

v̂(xX, yY )v̂(xyXY, zZ)v̂(xX, yzY Z)−1

= βx[ṽ(X, y)]βxy[ṽ(XY, z)]βx[ṽ(X, yz)]−1

= βx[ṽ(X, y)βy[ṽ(XY, z)]ṽ(X, yz)−1]

= φ(X, y, z)−3βx[ṽ(X, y)βy[ṽ(XY, z)ṽ(X, z)−1ṽ(X, y)−1]

= φ(X, y, z)−3βx[ṽ(X, y)βy[βX [ṽ(Y, z)]ṽ(X, y)−1]

= φ(X, y, z)−3βxβX [βy[ṽ(Y, z)]]

= φ(X, y, z)−3βxβX [v̂(yY, zZ)] ,

showing that a cocycle identity holds for v̂. The corresponding three-cocycle
ϕ(xX, yY, zZ) = φ(X, y, z)3 is not antisymmetric, but its antisymmetrisation,

[ϕ(xX, yY, zZ)ϕ(yY, zZ, xX)ϕ(zZ, xX, yY )]
1
3 = φ(X, y, z)φ(Y, z, x)φ(Z, x, y)

= φ(xX, yY, zZ),

is just the original cocycle φ. �

Theorem 8.2. Writing fY (y) = f(yY ), the crossed product algebra A�
̂β,v̂G ∼

(A� G1)�˜β G2 has twisted convolution product

(8.7) (f ∗ g)X =

∫

G2

fY ∗1
˜βY [gY −1X ] dY ,
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where ˜βX [f ](y) = βX [f(y)]ṽ(X, y), and ∗
2
denotes the convolution product on

A � G1. The map X → ˜βX is a group homomorphism, and ˜βX gives an isomor-
phism between twisted crossed products for multipliers σ and φXσ, where φX(y, z) =
φ(X, y, z).

Proof. We calculate that

(f ∗ g)(xX) =

∫

f(yY )βyβY [g(y
−1xY −1X)βy[ṽ(Y, y

−1x)] dydY

=

∫

f(yY )βy[βY [g(y
−1xY −1X)]ṽ(Y, y−1x)] dydY

=

∫

f(yY )βy[˜βY [g(y
−1xY −1X)]] dydY ,

so that

(f ∗ g)X =

∫

fY ∗
1
˜βY [gY −1X ] dY.

We can then check that

˜βX
˜βY [f ](z) = βX [βY [f(z)]ṽ(Y, z)]ṽ(X, z)

= βXY [f(z)]βX [ṽ(Y, z)]ṽ(X, z)

= βXY [f(z)]ṽ(XY, z)

= ˜βXY [f ](z) .

Next consider a twisted crossed product with U(1)-valued multiplier σ

(˜βX [f ] ∗ ˜βX [g])(x) =

∫

˜βX [f ](y)βy[˜βX [g](y−1z)]σ(y, y−1x) dy

=

∫

βX [f(y)]ṽ(X, y)βy[βX [g(y−1z)]ṽ(X, y−1z)]σ(y, y−1x) dy

=

∫

βX [f(y)]βX [βy[g(y
−1x)]]ṽ(X, y)βy[ṽ(X, y−1x)]σ(y, y−1x) dy

= βX [

∫

f(y)βy[g(y
−1x)]ϕ(X, y, y−1x)σ(y, y−1x) dy]ṽ(X, x) ,

which differs from ˜βX [f ∗ g](x) by the insertion of ϕ(X, y, y−1x) in the convolution
integral, changing the multiplier σ to ϕ(X, ·, ·)σ. �

This result tells us that the twisted crossed product multiplication for A�G can
be obtained by doing repeated crossed products but with a modified automorphism
action of the final subgroup. The result is still nonassociative because one still

has the three-cocycle ϕ. There is no inconsistency because ˜βX does not act as
automorphisms of a crossed product A � G1. We shall now show how to modify
things to get a more useful result.

Suppose now that we replace the algebra A by an algebra B which admits not
only an action of G but also a compatible action of C(G2) = C(G/G1). (This would
be automatic for an algebra induced to G from a subgroup N.)

Theorem 8.3. Let B be a C∗-algebra admitting an action β of the abelian
group G = G1 ×G2 with multiplier v and φ satisfying the conditions of the previous
theorems and also a compatible action of C(G2). Then B�β,v G is stably equivalent
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to an ordinary repeated crossed product (B�
̂β1
G1)�̂β2

G2, where ̂βj is the restriction

of ̂β to Gj.

Proof. We have already seen that, by replacing (β, v) by (̂β, v̂), the multipliers
on the subgroups are trivial and that when one splits the crossed product into a
repeated crossed product the first part is just an ordinary crossed product with

the action ̂β1. Now, by the Packer–Raeburn trick, this is stably equivalent to a
projective crossed product with the C(G2)-valued multiplier ϕ•(y, z) defined as the

function X �→ ϕ(X, y, z), The advantage is that ˜βX is now an automorphism, since
when we put σ = ϕ• we have

(˜βX [f ] ∗ϕ•
˜βX [g])(x) =

∫

˜βX [f ](y)βy[˜βX [g](y−1z)]ϕ•(y, y
−1x) dy

=

∫

βX [f(y)]ṽ(X, y)βy[βX [g(y−1z)]ṽ(X, y−1z)]ϕ•(y, y
−1x) dy

=

∫

βX [f(y)]βX [βy[g(y
−1x)]]ṽ(X, y)βy[ṽ(X, y−1x)]ϕ•(y, y

−1x) dy

=

∫

βX [f(y)]βX [βy[g(y
−1x)]]ϕ•(y, y

−1x)ϕ(X, y, y−1x) dy]ṽ(X, x)

= βX [

∫

f(y)βy[g(y
−1x)]ϕ•(y, y

−1x) dy]ṽ(X, x) = ˜βX [f ∗ϕ• g] ,

where ϕZ(y, z)ϕ(X, y, z) = ϕZX(y, z) = ̂βX(ϕZ(y, z)̂β
−1
X follows from compatibility

of the actions. �

This result takes us quite a long way towards proving the analogue of the
Connes-Thom isomorphism in our context. We take G = R3, with the subgroups

G1 = R2, and G2 = R. In [12] the algebra has the form B = indR
3

Z3A, and so has an
action of R3. As already noted the Moore cohomology group H3 is trivial on the
subgroups G1 = R2 and G2 = R. Using Theorem 7.1 we express the twisted crossed
product B�R

3 as a repeated crossed product (B�R
2)�R. The standard Connes-

Thom isomorphism tells us that K∗(B � R2) ∼= K∗(B), so that the first crossed
product does not change the K-theory. The second crossed product with G2 is
more problematic because the group does not act as automorphisms. However,
it is stably equivalent to the case where one does have automorphisms. In that
stably equivalent algebra the ordinary Connes-Thom theorem then asserts that the
K-theory of the crossed product (B�R2)�R is the same as that of B�R2 and so
of B, apart from a shift of 1 in degree. Superficially this appears to have proved the
desired generalisation of the Connes-Thom theorem to the twisted algebra B�β,vR

3,
but the missing ingredient is to check that the stabilisation equivalence valid for
ordinary K-theory is also consistent with the definition of K-theory in the category
CG(φ).

9. Some remarks and speculations related to K-theory

Here we give an application, to a version of K-theory, of Takai duality in our
context. For A an algebra in the category CG(φ) we can define the ring K0(A,Φ)
of stable equivalence classes of projective finite rank A-modules in CG(φ). We have

already seen that these modules are also A� ̂G-modules, and it follows from Propo-
sition A.2 that these are also finite rank and projective. There is thus a natural
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identification of K0(A,Φ) with the stable equivalences of finite rank projective

A� ̂G-modules. There is a caveat that K0(A, 1) does not reduce to the K-theory
of the G-algebra A, since the finite projective A-modules used in the definition are
also expected to be G-invariant. The reason is that only G-invariant projections are

well defined in the category CG(φ), cf. below. In fact, K0(A, 1) ∼= K0(A� ̂G), and

for G ∼= Rd Connes-Thom isomorphism theorem gives K0(A� ̂G) ∼= Kd(A), so that
K0(A, 1) ∼= Kd(A).

We actually want to apply this to a C∗-algebra of the form A = B � G, with

B associative, to find K0(B � G,Φ) in terms of equivalence classes of (B � G)� ̂G-

modules. By Theorem 7.1, one has (B�G)�̂G ∼= B⊗Kφ(L
2(G)), which by Appendix

A, can be strictified to the associative C∗-algebra B⊗K(L2(G)). (There is a natural
correspondence between the modules since the nonassociative effect of Φ appears
only for repeated actions, and the action itself can be defined in the same way
for both cases. The strictification functor thus preserves the properties of being
finite rank and projective.) This associative C∗-algebra is Morita equivalent to B
itself, so that the stable equivalence classes of finite rank projective modules for

(B � G)� ̂G are in natural bijective correspondence with those for B, that is, with
K0(B ⊗ K(L2(G))). In other words K0(B � G,Φ) ∼= K0(B ⊗ K(L2(G))).

At first sight a degree change appears to be missing, but this is a consequence
of the way we have defined K0(A,Φ), as previously explained. The morphisms in
the category CG(φ) with associator φ are G-maps, and so projective modules for an
algebra A in this category are submodules of free modules defined by G-invariant
projections E. Such modules can also be thought of as submodules of free modules
defined by idempotents e in a matrix algebra Mn(A), so that Ev = v � e. We then
see that

(9.1) v � g[e] = g(g−1v � e) = g(Eg−1v) = Ev = v � e ,

so that e = g[e] is invariant under the action of G.
To properly define the K-theory of a C∗-algebra in the category CG(φ), we

need to consider an enveloping category that includes not just G-morphisms. One
such candidate is the Karoubian enveloping category, and will be considered in a
future work. We also plan to investigate Tannakian duality and its consequences
in our context. More precisely, let G denote the Euclidean group, and φ the 3-
cocycle on it as in the text. Then our tensor category CG(φ) is just a twisted
representation category, Repc(G, φ), where the subscript is a reminder that we take
topology into consideration. Then the dual tensor category consists of continuous,
tensorial functors F : Repc(G, φ) → B(V ), where B(V ) denotes bounded operators
on the Hilbert space V . Here V varies, and tensorial means respecting the structures
in the tensor category. The dual tensor category is a tensor category denoted by
Repc(G, φ)

′, and the putative analog of Tannakian duality in this context would say
that Repc(G, φ) and Repc(G, φ)

′′ are equivalent tensor categories. The consequences
of Tannakian duality applied to C∗-algebras within CG(φ) = Repc(G, φ) will also be
explored.

Appendix A. Equivalence to a strict category

MacLane showed that every monoidal category is equivalent to a strict category
in which the structure maps such as Φ are the obvious identity maps. The general
construction is described and applied to the category CG(φ) in [1, 2]. We shall give
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a simpler alternative construction which works in this case, and it is one of those
cases where the structure is more transparent in the more general category CH(Φ)

of modules for a Hopf algebra H, although we shall apply it to H = C∗(̂G) ∼ C0(G).
(It is to some extent motivated by our observation that A-modules in the category

CG(φ) are automatically modules for the crossed product A� ̂G.)
The algebra H is an H-H-bimodule under the left and right multiplication ac-

tions, and so, in particular it is an object in CH(Φ), though it is not an algebra
in the category, since its multiplication is associative in the strict sense. We shall
exploit this dual role of H to construct the functor to a strict monoidal category.

Consider the functor F which takes each object A of CH(Φ) to the algebraic
tensor product F (A) = A ⊗ H, and each morphism T ∈ hom(A,B) to F (T ) ∈
hom(F (A), F (B)) which sends a ⊗ h to T (a) ⊗ h. (When H = C0(G) we can
use F (A) = C(G,A) as a more convenient alternative.) Since H is a bimodule
F (A) is an H-H-bimodule, with the right multiplication action by H, and the left
comultiplication action, given in Sweedler notation by

h · (a⊗ k) = Δh(a⊗ k) = h(1)[a]⊗ h(2)k.

With these actions we may take the new tensor product operation to be A⊗F B =
A⊗H B (or A⊗C0(G) B), for which the new identity object is F (C) = H (or C0(G))
itself.

Theorem A.1.

(i) For A ∈ CH(Φ) set F (A) = A⊗H and let the tensor product F (A)⊗HF (B)
be the quotient of (A ⊗ H) ⊗ (B ⊗ H) by the equivalence relation that
(a · h)⊗ b ∼ a⊗ (h · b), for all a ∈ F (A), b ∈ F (B) and h ∈ H. Then

F (A)⊗H F (B) ∼= F (A⊗ B).
(ii) For A ∈ CG(φ) set F (A) = C(G,A) and let the tensor product [F (A)⊗C0(G)

F (B)] be the quotient of C(G,A)⊗C(G,B) by the equivalence relation that
(a · h)⊗ b ∼ a⊗ (h · b), for all a ∈ F (A), b ∈ F (B) and h ∈ C0(G). Then

F (A)⊗C0(G) F (B) ∼= F (A⊗ B).
In each case set F (T ) = T ⊗ id for a morphism T . Then F defines a
functor between tensor categories. (The associator in each case is just Φ
tensored with the identity.)

Proof. We have

F (A)⊗H F (B) = (A⊗ H)⊗H (B ⊗ H) ∼= (A⊗ B)⊗ H = F (A⊗ B),
giving the result and showing consistency with the previous tensor product. (In
Sweedler notation we have the isomorphism is given explicitly by (a⊗h)⊗H (b⊗k) �→
(a ⊗Δ(h)(b ⊗ k)) = (a ⊗ (h(1)b) ⊗ (h(2)k).) Most of the rest is easily checked. In
particular, we find that

((a⊗ h)⊗H (b⊗ k))⊗H (c⊗ l) = ((a⊗ h(1)[b])⊗ (h(2)k(1)[c]))⊗ h(3)k(2)l

= Φ[(a⊗ (h(1)[b]⊗ h(2)k(1)[c]))]⊗ h(3)k(2)l

= (Φ⊗ id)[(a⊗ h)⊗H [(b⊗ k)⊗H (c⊗ l)]] .

�

For future reference we also note the connection with the crossed product.
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Proposition A.2. If A is an algebra with multiplication � then F (A) can be
given the multiplication defined by the maps

F (A)⊗H F (A) = F (A⊗A) ∼= (A⊗A)⊗ H −→ (A⊗ H) = F (A),

where the arrow denotes the map � ⊗ 1. When H = C0(G), F (A) equipped with
this multiplication is just the crossed product A� G. If M is a module for A then
F (M) is a module for F (A), and (id⊗ ε)F (M) can be identified with M regarded

as a A� ̂G-module.

Proof. We have

(a⊗ h)⊗ (b⊗ k) = (a⊗ h(1)[b])⊗ h(2)k �→ (a � h(1)[b])⊗ h(2)k,

which is the crossed product multiplication in A� G, when H = C0(G). Replacing
b by an element of M and applying ε (which is a counit and a multiplicative
homomorphism) we have

(id⊗ ε)[(a⊗ h) � (m⊗ k)] = (a⊗ h(1)[m])ε(h(2)k)

= (a � h(1)[m])⊗ ε(h(2))ε(k)

= (a � h[m])⊗ ε(k),

as required. �

The advantage of expressing the crossed product action in terms of F is that

the functor respects direct sums and maps the free A-module An to the free A� ̂G-

module (A� ̂G)n. If M is a finite rank projective module defined by e : An → M,

then F (M) is a finite rank projective module defined by (A� ̂G)n → F (M), and,

taking the image under id⊗ε, we see thatM is a finite rank projectiveA�̂G-module.
We now introduce a new tensor product F (A) ◦F (B), such that for a ∈ F (A),

b ∈ F (B), and c ∈ F (C), we have

(a ◦ b)⊗H c = a⊗H (b⊗H c).

This can be done explicitly using Φ, since

(a ◦ b)⊗H c = Φ−1((a⊗H b)⊗H c),

and Φ−1 is given by the left action of an element φ−1 ∈ H⊗H⊗H on A⊗B⊗C. For
convenience we shall write φ−1 in a Sweedler type notation as φ−1 = φ′ ⊗φ′′ ⊗φ′′′,
but this is neither intended to imply that φ is decomposable nor that this is in the
range of (Δ⊗ 1)Δ. We then have

(a ◦ b)⊗H c = (φ′ · a⊗H φ′′ · b)⊗H φ′′′c = (φ′ · a⊗H φ′′ · b) · φ′′′ ⊗H c ,

or, formally,

a ◦ b = (φ′ · a⊗H φ′′ · b) · φ′′′ ∈ F (A)⊗H F (B).
In fact, this expression makes perfectly good sense (in the multiplier algebra if not
in the original algebra), and can be used as a definition of a ◦ b. (This would not
have been true in the original setting with a ∈ A and b ∈ B, and the original tensor
product, since there was only a left action and the argument would have led to
a ◦ b = (φ′ · a⊗H φ′′ · b)⊗ φ′′′ ∈ (A⊗B)⊗H, not in A⊗B. Whether it makes sense
in the original algebra or in some slightly extended algebra depends on the detail
of the situation. The case when H = C0(G), F (A) = C(G,A) gives a large enough
algebra to work whilst the algebraic tensor product would generally be too small.)
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Another useful way of thinking about the product is that F (A ⊗ B) ∼ [(A ⊗
B)⊗ H], and Φ−1 maps this to A⊗ (B ⊗ H) ∼ A⊗ F (B) ∼ F (A)⊗H F (B).

As a consequence of the definition, for d ∈ F (D)

(a ◦ b) ◦ c)⊗ d = (a ◦ b)⊗ (c⊗ d)

= a⊗ (b⊗ (c⊗ d))

= a⊗ ((b ◦ c)⊗ d)

= (a ◦ (b ◦ c))⊗ d,

and taking D = H we see that we now have strict associativity. We note that if H has
a unit 1 the original algebra A can be identified with the subalgebra A⊗1 ⊆ A⊗H,
(or in the case of H = C0(G) with the constant functions in the algebra C(G,A)).
These are not closed under the new tensor product ◦.

The new tensor product now carries over to products on algebra, so that �
is replaced by a new product a ∗ b = ψz[a � b], where φz(x, y) = φ(x, y, z) acts
as an element of C(G) ⊗ C(G), The associativity of this may now be checked by
either of the above calculations, and similarly for actions of algebras on modules.
In summary, the action of an algebra A on a C0(G)-module can always be replaced

by an action of the crossed product A � ̂G, which a Fourier transform identifies
with C(G,A), which means that for modules one always works with the objects
whose multiplication can be made associative. This result clarifies the paradox
of the relevance of nonassociative algebras when algebras of operators are always
associative, for we see that in representation the action of nonassociative algebras
can always be replaced by an associative action if one so wishes. The situation
is rather similar to that of projective representations of groups, where, for any
multiplier σ on a group G, a projective σ-representation of G can be obtained
from an ordinary representation of its central extension Gσ. Nonetheless, there
are situations in which G and σ appear naturally or linking a number of different
situations, so that although Gσ is technically useful, it does not really capture the
essence of the situation. The study of the canonical commutation relations as a
projective representation of a vector group provides a good example. The central
extension has representations allowing all possible values of Planck’s constant, and
so misses an important feature of the physical situation.

In addition to the left and right actions of H, when H is a Hopf algebra there
is also a right coaction of H on F (A) = A⊗ H given by

id⊗Δ : A⊗ H �→ (A⊗ H)⊗ H,

and similarly for C0(G). There is no rebracketing problem since H is the algebra
whose modules give the objects rather than an object itself, and the fact that this
is a coaction follows from the coassociativity of Δ. To check compatibility with the
tensor product structure, we note that

(a⊗ h)⊗H (b⊗ k) = (a⊗ h(1))⊗H (b⊗ h(2)k)

�→ [(a⊗ h(1))⊗H (b⊗ h(2)k(1))]⊗ h(3)k(2)

= [(a⊗ h(1))⊗H (b⊗ k(1))]⊗ h(2)k(2),

showing direct compatibility with the coaction on the individual factors. (With a
little modification of the functor F it is possible to work with quasi-Hopf algebras
too.)
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If we instead consider the dual action of θ in the dual Hopf algebra H∗ given
in Sweedler notation by

θ[a⊗ h] = θ(h(2))a⊗ h(1) ,

where θ(h(2)) denotes the pairing of H∗ with H, then this shows that one has the
correct action on tensor products. We can therefore regard F as a functor from
CH(Φ) to CH∗

(1) (or from CG(φ) to C
̂G(1)).

A.1. Example: Strictification of the twisted compact operators. The
easiest way to see how the strictifcation works is to consider an example, such as
the algebra Kφ(L

2(G)), which maps to F (Kφ(L
2(G))) = C(G,Kφ(L

2(G))). We first
note that the product of a⊗ h and b⊗ k in A⊗ C0(G) is given by

((a⊗ h) � (b⊗ k))(x) = (a � h(1)[b])⊗ (h(2)k)(x) = (a � h(1)[b])⊗ h(2)(x)k(x).

Now, defining hx(u) = h(ux) = (Δh)(u, x) = h(1)(u)h(2)(x), we see that the prod-
uct can be rewritten as

((a⊗ h) � (b⊗ k))(x) = (a � hx[b])k(x).

Writing k(x)(v, w) = k(v, w;x) for the Kφ(L
2(G))-valued function on G, the action

of a function hx is just multiplication by hx(vw
−1) = h(vw−1x) The product of

two such kernel-valued functions is therefore

(k1 � k2)(u,w;x) =

∫

k1(u, v; vw
−1x)k2(v, w;x)φ(uv

−1, vw−1, w) dv .

This can be rewritten as

(k1 � k2)(u,w;wx) =

∫

k1(u, v; vx)k2(v, w;wx)φ(uv
−1, vw−1, w) dv ,

so that kj �→ k′j(u,w;x) = kj(u,w;wx) gives an isomorphism with C0(G)⊗K(L2(G))
equipped with componentwise multiplication.

According to the general prescription we can turn this into an associative prod-
uct by applying Φ−1, that is, multiplying by φ(uv−1, vw−1, wx)−1, to get

(k1 ∗ k2)(u,w;wx)

=

∫

k1(u, v; vx)k2(v, w;wx)φ(uv
−1, vw−1, wx)−1φ(uv−1, vw−1, w) dv ,

The cocycle identity tells us that

φ(uw−1, w, x)φ(uv−1, vw−1, wx) = φ(uv−1, vw−1, w)φ(uv−1, v, x)φ(vw−1, w, x) ,

so that we can rewrite the product as

(k1 ∗ k2)(u,w;wx)φ(uw−1, w, x)−1

=

∫

k1(u, v; vx)k2(v, w;wx)φ(uv
−1, v, x)−1φ(vw−1, w, x)−1 dv .

Setting kF (u,w;x) = k(u,w,wx)φ(uw−1, w, x)−1 gives

(k1 ∗ k2)F (u,w, x) =
∫

kF1 (u, v;x)k
F
2 (v, w;x) dv .

showing that the new product is isomorphic to the usual product on C(G,K(L2(G)))
∼= C0(G)⊗K(L2(G)), which is certainly associative.

For future reference we note that the same argument applies to algebra-valued
compact operators Kφ(L

2(G)) ⊗ A when A is associative, the only change being
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that the product of kj in the composition formula must be interpreted as a product
in the algebra rather than of scalars.

This example shows that quite different nonassociative algebras can have the
same associative version, since for any cocycle φ, Kφ(L

2(G)) has C(G,K(L2(G))) as
its associative version (including the case of trivial φ, when the algebra is associative
from the start).

This is important in clarifying the duality theorem [12, 9.2], where it was shown
that the double dual of B = u-indGN(A) is Kφ(L

2(G)) ⊗ B, since the associative
version K(L2(G))⊗B is stably equivalent to B, as usual. This certainly means that
all the representations (that is, the modules) correspond naturally with those of B.
We summarise this in a theorem.

Theorem A.3. The dual ̂B = B �β,v G of the algebra B = u-indGN (A) is a

nonassociative algebra with a natural action of ̂G, and the double dual ̂B� ̂G can be
given the associative product K(L2(G))⊗ u-indGN (A).

We conclude by noting that the octonions O can be constructed from R using
G = Z2 × Z2 × Z2 with the cocycle

(A.1) φ(a,b, c) = (−1)[a,b,c] = (−1)a·(b×c) ,

where G is identified with {0, 1}3 ⊂ R3. Thus the same procedure can be used to
give an associative version of C(Z2 ×Z2 ×Z2,O), as a 64-dimensional algebra over
R.

Appendix B. Nonassociative bounded operators, tempered
distributions & a concrete approach to nonassociative C∗-algebras

We begin with an illustrative example. Let G = R
n, and consider the space of all

bounded operators B(L2(G)) on the Hilbert space L2(G). We begin by showing that
T ∈ B(L2(G)) determines a unique tempered distribution kT on G2. That is, there
is a canonical embedding, B(L2(G)) ↪→ S ′(G2). This embedding will be frequently
used, for instance to give the algebra B(L2(G)) a nonassociative product, which has
the advantage of being rather explicit. Later, we will also determine other closely
related results. Recall that the Sobolev spaces Hs(G), s ∈ R, are defined as follows:
the Fourier transform on Schwartz functions on G is a topological isomorphism,
̂: S(G) → S(G), where we identify G with its Pontryagin dual group. It extends
uniquely to an isometry on square integrable functions on G, ̂ : L2(G) → L2(G).
Moreover, by duality, the Fourier transform extends to be a topological isomorphism
on tempered distributions on G, ̂ : S ′(G) → S ′(G). Then for s ∈ R, define Hs(G)

to be the Hilbert space of all tempered distributions Q such that (1 + |ξ|2)s/2 ̂Q(ξ)

is in L2(G), with inner product 〈Q1, Q2〉s = 〈(1+ |ξ|2)s/2 ̂Q1(ξ), (1+ |ξ|2)s/2 ̂Q2(ξ)〉0,
where 〈 , 〉0 denotes the inner product on L2(G).

The following are some basic properties of Sobolev spaces, which are established
in any basic reference on distribution theory. For s < t, Ht(G) ⊂ Hs(G) and
moreover the inclusion map Ht(G) ↪→ Hs(G) is continuous. Also one has S(G) =
⋂

s∈R
Hs(G), S ′(G) =

⋃

s∈R
Hs(G) and the inclusions ιs : S(G) ↪→ Hs(G) and

κs : H
s(G) ↪→ S ′(G) are continuous for any s ∈ R. The renowned Schwartz kernel

theorem says that a continuous linear operator T : S(G) → S ′(G) determines a
unique tempered distribution kT on G2, and conversely.
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Lemma B.1. There is a canonical embedding,

(B.1) B(L2(G)) ↪→ S ′(G2) ,

whose image is contained in the subspace of composable tempered distributions.

Proof. Suppose that T ∈ B(L2(G)). Then in the notation above, the compo-
sition

(B.2) κ0 ◦ T ◦ ι0 : S(G) → S ′(G) ,

is a continuous linear operator. By the Schwartz kernel theorem, it determines a
unique tempered distribution kT ∈ S ′(G2). Suppose now that S ∈ B(L2(G)). Then
ST ∈ B(L2(G)) and

(B.3) kST (x, y) =

∫

z∈G

kS(x, z)kT (z, y) dz ,

where

∫

z∈G

dz denotes the distributional pairing. �

We can now define a new product on B(L2(G)) making it into a nonassociative
C∗-algebra.

Definition B.2. Let φ ∈ C(G × G × G) be an antisymmetric tricharacter on
G. For S, T ∈ B(L2(G)), define the tempered distribution kS�T ∈ S ′(G2) by the
formula

(B.4) kS�T (x, y) =

∫

z∈G

kS(x, z)kT (z, y)φ(x, y, z) dz .

Then for all ξ, ψ ∈ L2(G), the linear operator S � T given by the prescription

(B.5) 〈ξ, S � Tψ〉0 =

∫

x,y∈G

kS�T (x, y)ξ̄(x)ψ(y) dxdy ,

defines a bounded linear operator in B(L2(G)), which follows from the earlier ob-
servation that S � T is an adjointable operator.

This extends the definition in [12] of twisted compact operators Kφ(L
2(G)).

Then by §4, � defines a nonassociative product on B(L2(G)) which agrees with the
nonassociative product on the twisted compact operators, which will be justified
in what follows. We denote by Bφ(L

2(G)) the space B(L2(G)) endowed with the
nonassociative product �, and call it the algebra of twisted bounded operators.

There is an involution kS∗(x, y) = kS(y, x) for all S ∈ Bφ(L
2(G)), and the

norm on Bφ(L
2(G)) is the usual operator norm. The following are obvious from the

definition: ∀ λ ∈ C, ∀ S1, S2 ∈ Bφ(L
2(G)),

(B.6)
(S1 + S2)

∗ = S∗
1 + S∗

2 ,
(λS1)

∗ = λ̄S∗
1 ,

S∗∗
1 = S1 .

The following lemma can be proved as in Section 5 in [12].

Lemma B.3. ∀ S1, S2 ∈ Bφ(L
2(G)),

(B.7) (S1 � S2)
∗ = S∗

2 � S∗
1 .
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What appears to be missing for the deformed bounded operators Bφ(L
2(G)) is

the so called C∗-identity,

(B.8) ||S∗
1 � S1|| = ||S∗

1S1|| = ||S1||2.
However, we will continue to call Bφ(L

2(G)) a nonassociative C∗-algebra and this
prompts the following definition of a general class of nonassociative C∗-algebras.

Definition B.4. A nonassociative C∗-subalgebra A of Bφ(L
2(G)), is defined

to be a G-invariant, �-subalgebra of Bφ(L
2(G)) that is closed under taking adjoints

and also closed in the operator norm topology.

In particular, such an A satisfies the identities in equations (B.6) and (B.7).
Examples include the algebra of twisted bounded operators Bφ(L

2(G)) and the
algebra of twisted compact operators Kφ(L

2(G)). The following two propositions
can be proved as in Section 5 of [12].

Proposition B.5. The group G acts on the twisted algebra of bounded operators
Bφ(L

2(G)) by natural ∗-automorphisms

(B.9) θx[k](z, w) = φ(x, z, w)k(zx, wx),

and θxθy = ad(σ(x, y))θxy, where ad(σ(x, y))[k](z, w) = φ(x, y, z)k(z, w)φ(x, y, w)−1

comes from the multiplier σ(x, y)(v) = φ(x, y, v).

Proposition B.6. Bφ(L
2(G)) is a continuous deformation of B(L2(G)).

Appendix C. Nonassociative crossed products and nonassociative tori

C.1. Nonassociative tori – revisited. Here will present a slightly different,
more geometric, approach to the definition of the nonassociative torus as defined
in [12], which in fact generalizes the construction there, and also realizes it as a
nonassociative deformation of the algebra continuous functions on the torus. We
begin with a general construction, and later specialize to the case when M is the
torus.

Basic Setup: Let M be a compact manifold with fundamental group Γ, and ˜M

its universal cover. Assume for simplicity that ˜M is contractible, that is M = BΓ
is the classifying space of Γ. In that case we have an isomorphism Hn(M,Z) ∼=
Hn(Γ,Z), due to Eilenberg and MacLane [17, 18].

A large class of examples of manifolds M that satisfy the hypotheses of the
Basic Setup are locally symmetric spaces M = Γ\G/K, where G is a Lie group, K
a maximal compact subgroup of G, Γ a discrete, torsion-free cocompact subgroup

of G, since in this case ˜M = G/K is a contractible manifold. This includes tori and
hyperbolic manifolds in particular.

The isomorphism Hn(M,R) → Hn(Γ,R) can be explicitly constructed by mak-

ing use of the double complex (Cp,q(˜M,Γ); δ, d), with

(C.1) Cp,q(˜M,Γ) = Cp(Γ,Ωq(˜M)) = {f : Γ⊗p → Ωq(˜M)} ,
where we think of q-forms on ˜M as a left Γ-module through the action γ · ω =

(γ∗)−1ω. The differential d : Cp,q(˜M,Γ) → Cp,q+1(˜M,Γ) is the de Rham differen-

tial on Ω(˜M), hence this complex is acyclic since ˜M is contractible. The differential

δ : Cp,q(˜M,Γ) → Cp+1,q(˜M,Γ) is given by
(C.2)
(δf)γ1,...,γp+1

= γ1 · fγ2,...,γp+1
− fγ1γ2,...,γp+1

+(−1)pfγ1,...,γpγp+1
+(−1)p+1fγ1,...,γp

.
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Its cohomologyHp(Γ,Ωq(˜M)) is known as the group cohomology with coefficients in

the Γ-module Ω(˜M). The map H(M,R) → H(Γ,R) is now obtained by ‘zigzagging’
through this double complex, much in the same way as for the Čech-de Rham
complex. We will illustrate the procedure in the case of our interest, i.e. how to
explicitly associate to a closed degree 3 differential form H on M a U(1)-valued
3-cocycle σ on the discrete group Γ.

First we let ˜H denote the lift of H to ˜M . Now ˜H = dB, where B is a 2-form

on ˜M , i.e. B ∈ C0,2(˜M,Γ). Since ˜H is Γ-invariant, it follows that for all γ ∈ Γ, we

have 0 = γ · ˜H − ˜H = d(γ · B − B) = dδB, so that γ ·B −B is a closed 2-form on
˜M . By hypothesis, it follows that

(C.3) (δB)γ = γ ·B −B = dAγ ,

for some 1-form Aγ on ˜M , i.e. A ∈ C1,1(˜M,Γ). Then by (C.3), it follows that the
following identity holds for all β, γ ∈ Γ:

d(β ·Aγ − Aβγ +Aβ) = dδA = δdA = δ2B = 0 .

By hypothesis, it follows that

β ·Aγ −Aβγ +Aβ = (δA)β,γ = dfβ,γ

for some smooth function fβ,γ on ˜M , that is, f ∈ C2,0(˜M,Γ). Continuing, one
computes that,

d(α · fβ,γ − fαβ,γ + fα,βγ − fα,β) = dδf = δ2A = 0 .

Therefore

α · fβ,γ − fαβ,γ + fα,βγ − fα,β = (δf)α,β,γ = c(α, β, γ) ,

where c(α, β, γ) is a constant. That is, c : Γ× Γ× Γ → R is a 3-cocycle on Γ, and
we can set for all t ∈ R,

(C.4) σt(α, β, γ) = exp (itc(α, β, γ)) .

Then σt(α, β, γ) is a U(1)-valued 3-cochain on γ, satisfying the pentagonal identity,

(C.5) σt(α, β, γ)σt(α, βγ, δ)σt(β, γ, δ) = σt(αβ, γ, δ)σt(α, β, γδ) ,

for all α, β, γ, δ ∈ Γ. That is, σt(α, β, γ) is actually a U(1)-valued 3-cocycle on Γ.
It is convenient to normalize the function fα,β such that fα,β(x0) = 0 for all

α, β ∈ Γ and for some x0 ∈ ˜M . Then the formula for the U(1)-valued 3-cocycle on
Γ simplifies to,

σt(α, β, γ) = exp
(

it(α∗−1fβ,γ(x0))
)

.

Consider the unitary operator ut(β, γ) acting on L2(Γ) given by

(ut(β, γ)ψ)(α) = exp(itα∗−1fβ,γ(x0))ψ(α) = σt(α, β, γ)ψ(α).

We easily see that

σt(α, β, γ)ut(α, β)ut(αβ, γ) = ξα[ut(β, γ)]ut(α, βγ)

where ξα = ad(ρ(α)) and (ρ(α)ψ)(g) = ψ(gα) is the right regular representation.
One can define, analogous to what was done in [12], a twisted convolution product
and adjoint on C(Γ,K), K = K(L2(Γ)), by

(C.6) (f ∗t g)(x) =
∑

y∈Γ

f(y)ξy[g(y
−1x)]ut(y, y

−1x) ,
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and

(C.7) f∗(x) = ut(x, x
−1)−1ξx[f(x

−1)]∗ .

The operator norm completion is the nonassociative twisted crossed product C∗-
algebra

C∗(K,Γ, σt) = K(L2(Γ))�ξ,ut
Γ.

where as before, σt(α, β, γ) is a U(1)-valued 3-cocycle on Γ as above. This con-
struction extends easily to the case when K is replaced by a general Γ-C∗-algebra
A, giving rise to a nonassociative C∗-algebra denoted by C∗(A,Γ, σt) = A�ξ,ut

Γ.
In the special case when M = Tn is a torus, we get the nonassociative torus

Aσt
(n). Now Aσ0

(n) is just the ordinary crossed product K(L2(Zn)) � Zn, where
Z
n acts on K(L2(Zn)) via the the adjoint of the left regular representation. By the

Stabilization theorem, and using the Fourier transform,

K(L2(Zn))� Z
n ∼= C∗(Zn)⊗K(L2(Zn)) ∼= C(Tn)⊗K(L2(Zn)).

This then indicates why Aσt
(n) is a nonassociative deformation of the ordinary

torus Tn for t �= 0.

Example. As an explicit example, consider the 3-torus M = T3. We have
˜M = R3 and Γ = Z3. Let us take, for H ∈ H3(M,R), k times the volume
form on M (i.e. k times the image in de Rham cohomology of the generator of

H3(M,Z) ∼= Z). Its lift to ˜M is explicitly given by

˜H = k dx1 ∧ dx2 ∧ dx3 ,

where (x1, x2, x3) are standard coordinates on ˜M = R3. Let us denote elements
of Γ = Z3 by n = (n1, n2, n3). Going through the procedure above, we see that a
representative of this 3-form in group cohomology is given by c(l,m,n) = k l1m2n3.
However, by making different choices for B,An, etc., specifically

B = 1
3k (x1 dx2 ∧ dx3 + cycl) ,

An = 1
6k (n1(x2dx3 − x3dx2) + cycl) ,

fm,n = 1
6k (m1(n2x3 − n3x2) + cycl) ,

we can also construct a completely antisymmetric representative, namely

(C.8) c(l,m,n) = 1
6k l · (m× n) .

It is this representative which gives rise to an antisymmetric tricharacter σt on Γ.
Note that the image of an integer cohomology class in H3(M,R) is not necessarily
integer-value, but in this example rather ends up in 1

6Z. This example explains and
corrects a discrepancy between our earlier paper [12] and the physical interpretation
of our nonassociative 3-torus in the context of open string theory by Ellwood and
Hashimoto (cf. Eqn. (5.14) in [19]).

C.2. Factors of automorphy and continuous trace C∗-algebras. We
next study principal PU-bundles P and associated bundles of compact operators
KP and their sections over manifolds M that satisfy the assumptions of the Basic

Setup of Appendix C.1. Let ˜P denote the lift of P to ˜M . Since H3(˜M) = 0, it

follows that ˜P is trivializable, i.e. ˜P ∼= ˜M × PU. Having fixed this isomorphism,
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we can define a continuous map j : Γ × ˜M → PU = Aut(K) by the following
commutative diagram,

(C.9) K = (K
˜P )x

p

���
��

��
��

��
��

��
��

�

j(γ,x) �� K = (K
˜P )γ·x

p

����
��
��
��
��
��
��
��

(KP )p(x)

Then

(C.10) j(γ1γ2, x)
−1j(γ1, γ2x)j(γ2, x) = 1.

is a factor of automorphy for the bundle KP . Conversely, given a continuous map

j : Γ × ˜M → PU = Aut(K) satisfying (C.10), we can define a bundle of compact
operators,

(C.11) Kj = (˜M ×K)/Γ → M

where γ · (x, ξ) = (γ · x, j(γ, x)ξ) for γ ∈ Γ and (x, ξ) ∈ ˜M ×K.
Given any two algebra bundles of compact operators, Kj ,Kj′ over M with

factors of automorphy j, j′ respectively, and an isomorphism φ : Kj −→ Kj′ , we get
an induced isomorphism

(C.12) ˜φ : ˜M ×K = ˜Kj −→ Kj′ = ˜M ×K

given by ˜φ(x, ξ) = (x, u(x)ξ), where u : ˜M → PU is continuous. Since ˜φ commutes

with the action of Γ, γ · ˜φ(x, ξ) = ˜φ(γ(x, ξ)), we deduce that (γ · x, j′(γ, x)u(x)ξ) =
(γ · x, u(γ · x)j(γ, x)ξ). Therefore
(C.13) j′(γ, x) = u(γ · x)j(γ, x)u(x)−1

for all x ∈ ˜M and γ ∈ Γ. Conversely, two factors of automorphy j, j′ give rise
to isomorphic algebra bundles Kj ,Kj′ of compact operators if they are related by

(C.13) for some continuous function u : ˜M → PU.
Therefore continuous sections of KP can be viewed as continuous maps f ∈

C(˜M,K) satisfying the property,

(C.14) f(γ · x) = j(γ, x)f(x), ∀γ ∈ Γ, x ∈ ˜M.

For example, f(x) :=
∑

γ∈Γ j(γ, x)
−1F (γ · x) converges uniformly on compact sub-

sets of ˜M whenever F : ˜M → K is a compactly supported continuous function, and
satisfies (C.14), therefore defining a continuous section of KP .

We would like to write the Dixmier-Douady invariant of the algebra bundle
of compact operators KP over M in terms of the factors of automorphy. There is

no obstruction to lifting the factor of automorphy j : Γ × ˜M → PU = Aut(K) to
̂j : Γ× ˜M → U, because of our assumptions on ˜M . However the cocycle condition
(C.10) has to be modified,

(C.15) ̂j(γ1γ2, x)
−1

̂j(γ1, γ2x)̂j(γ2, x) = τ (γ1, γ2, x) ,

where τ : Γ×Γ×˜M → U(1). There is no obstruction to lifting τ : Γ×Γ×˜M → U(1)

to τ̂ : Γ×Γ×˜M → R, however the cocycle condition satified by τ has to be modified
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to δτ̂(γ1, γ2, γ3) = η(γ1, γ2, γ3), where η : Γ × Γ × Γ → Z is a Z-valued 3-cocycle
on Γ. One can show DD(P ) = δ([τ ′]) = [η]. Thus, given a principal PU bundle
P on M , we have derived a cohomology class [η] ∈ H3(Γ,Z) ∼= H3(M,Z) which
is by standard arguments independent of the choices made. The relation with the
previous discussion is that [η] = [c].

To see that the converse is true, notice that τ can be viewed as a continuous

map τ ′ : Γ × Γ → C(˜M,U(1)), which is easily verified to be a C(˜M,U(1))-valued
2-cocycle on Γ. Recall from standard group cohomology theory that equivalence

classes of extensions of a group Γ by an abelian group C(˜M,U(1)) on which Γ
acts is in bijective correspondence correspondence with the group cohomology with

coefficients, H2(Γ, C(˜M,U(1))). We will first show that possible extensions ˜Γ of Γ

by C(˜M,U(1)) are in bijective correspondence with elements of H3(M,Z) called
the Dixmier-Douady invariant, and we will also compute DD(P ) ∈ H3(M,Z) in
our case. Now there is an exact sequence of abelian groups,

(C.16) 0 → Z → C(˜M,R) → C(˜M,U(1)) → 0 .

This leads to a change of coefficients long exact sequence,
(C.17)

· · · → H2(Γ, C(˜M,R)) → H2(Γ, C(˜M,U(1)))
δ→ H3(Γ,Z) → H3(Γ, C(˜M,R)) → ·

Since Γ acts freely on ˜M and C(˜M,R) is an induced module, it follows that

Hj(Γ, C(˜M,R)) = 0 for all j > 0. Therefore Hj(Γ, C(˜M,U(1))) ∼= Hj+1(Γ,Z) =
Hj+1(M,Z) for all j > 0, and in particular for j = 2 as claimed. In particular,

since [τ ′] ∈ H2(Γ, C(˜M,U(1))), we see that DD(P ) = δ([τ ′]) = [η] ∈ H3(Γ,Z) =
H3(M,Z) is the Dixmier-Douady invariant of P .

We next explain how the data (H,B,Aγ , fα,β) also determine a bundle gerbe

in a natural way. The bundle gerbe consists of the submersion ˜M → M . Then the

fibered product ˜M [2] is equivariantly isomorphic to Γ×˜M . Under this identification,

the two projection maps πi : ˜M
[2] → ˜M, i = 1, 2 become the action μ : Γ×˜M → ˜M

of Γ on ˜M and the projection p : ˜M × Γ → ˜M , respectively. Then Aγ defines a

connection on the trivial line bundle Lγ → {γ} × ˜M whose curvature is dAγ . The
choice of curving is B, satisfying the equation μ∗B−p∗B = dA, which on the sheet

{γ} × ˜M reduces to γ∗B − B = dAγ . The 3-curvature dB = ˜H is the lift of the
closed 3-form H on M . What is surprising is that H need not have integral periods!

Appendix D. Motivation from T-duality in String Theory

For completeness we have summarized the original motivation for this work,
namely T-duality in string theory, in this appendix. We believe, however, that the
results in this paper are of interest independent of our original motivation.

T-duality, also known as target space duality, plays an important role in string
theory and has been the subject of intense study for many years. In its most basic
form, T-duality relates a string theory compactified on a circle of radius R, to a
string theory compactified on the dual circle of radius 1/R by the interchange of the
string momentum and winding numbers. T-duality can be generalized to locally
defined circles (principal circle bundles, circle fibrations), higher rank torus bundles
or fibrations, and in the presence of a background H-flux which is represented by a
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closed, integral Čech 3-cocycle H on the spacetime manifold Y . It is closely related
to mirror symmetry through the SYZ-mechanism.

An amazing feature of T-duality is that it can relate topologically distinct
spacetime manifolds by the interchange of topological characteristic classes with
components of the H-flux. Specifically, denoting by (Y, [H]) the pair of an (isomor-
phism class of) principal circle bundle π : Y → X, characterized by the first Chern
class [F ] ∈ H2(X,Z) of its associated line bundle, and an H-flux [H] ∈ H3(Y,Z),

the T-dual again turns out to be a pair (̂Y , [ ̂H]), where the principal circle bundles

T �� Y

π


X

, T ��
̂Y

π̂


X

are related by [ ̂F ] = π∗[H], [F ] = π̂∗[ ̂H ], such that on the correspondence space

Y

π

��








Y ×X
̂Y

p̂

��








p

����
��
��
��
��

X

̂Y

π̂

����
��
��
��
��
�

we have p∗[H]− p̂∗[ ̂H ] = 0 [8, 9].
In earlier papers we have argued that the twisted K-theoryK•(Y, [H]) (see, e.g.,

[7]) classifies charges of D-branes on Y in the background of H-flux [H] [13], and
indeed, as a consistency check, one can prove that T-duality gives an isomorphism of
twisted K-theory (and the closely related twisted cohomology H•(Y, [H]) by means
of the twisted Chern character chH) [8]

K•(Y, [H])
T! ��

chH



K•+1(̂Y , [ ̂H])

ch
̂H


H•(Y, [H])

T∗ �� H•+1(̂Y , [ ̂H])

The above considerations were generalized to principal torus bundles in [10, 11].
Since the projective unitary group of an infinite dimensional Hilbert space

PU(H) is a model for K(Z, 2), we can ‘geometrize’ the H-flux in terms of an (iso-
morphism class of) principal PU(H)-bundle P over Y . We can reformulate the
discussion of T-duality above in terms of noncommutative geometry as follows.
The space of continuous sections vanishing at infinity, A = C0(Y, E), of the associ-
ated algebra bundle of compact operator K on the Hilbert space E = P ×PU(H) K.
A is a stable, continuous-trace, C∗-algebra with spectrum Y , and has the property
that it is locally Morita equivalent to continuous functions on Y . Thus the H-flux
has the effect of making spacetime noncommutative. The K-theory of A is just
the twisted K-theory K•(Y, [H]). The T-action on Y lifts essentially uniquely to
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an R-action on A. In this context T-duality is the operation of taking the crossed
product A�R, which turns out to be another continuous trace algebra associated

to (̂Y , [ ̂H ]) as above. A fundamental property of T-duality is that when applied
twice, yields the original algebra A, and the reason that it works in this case is due
to Takai duality. The isomorphism of the D-brane charges in twisted K-theory is,
in this context, due to the Connes-Thom isomorphism. These methods have been
generalized to principal torus bundles by Mathai and Rosenberg [31, 32, 33], how-
ever novel features arise. First of all the T

n-action on the principal torus bundle
Y need not always lift to an Rn-action on A. Even if it does, this lift need not
be unique. Secondly, the crossed product A � Rn need not be a continuous-trace
algebra, but rather, it could be a continuous field of noncommutative tori [31], and
necessary and sufficient conditions are given when these T-duals occur. More gen-
erally, as argued in [10], when the Tn-action on the principal torus bundle Y does
not lift to an Rn-action on A, one has to leave the category of C∗-algebras in order
to be able to define a “twisted” lift. The associator in this case is the restriction of
the H-flux H to the torus fibre of Y , and the “twisted” crossed product is defined
to be the T-dual. The fibres of the T-dual are noncommutative, nonassociative
tori. That this is a proper definition of T-duality is due to our results which show
that the analogs of Takai duality and the Connes-Thom isomorphism hold in this
context. Thus an appropriate context to describe nonassociative algebras that arise
as T-duals of spacetimes with background flux, such as nonassociative tori, is that
of C∗-algebras in tensor categories, which is the subject of this paper.
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