Acoustic metamaterial chains involving inertial amplification: Linear case

Luke Bennetts

University of Adelaide

Alex Skvortsov and Paul Dylejko

Maritime Division, Defence Science & Technology Group, Melbourne

Malte Peter

University of Augsburg, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

AMMs using lightweight attachments

General area

- Seek effective low-frequency noise isolation using AMMs.
 - Components that cause noise pollution.
- Without using heavy elements.
 - Heavy = impractical for applications.
- Use inerters
 - Inertial force proportional to relative motion.
 - E.g. J-dampers in F1 racing car suspension systems.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

AMMs using lightweight attachments

AMMs using lightweight attachments

"... band gaps that are exceedingly wide and deep ... as much as twenty times less added mass compared to what is needed in a standard local resonator configuration"

An application (Dylejko & MacGillvray, 2014)

Vibration isolators

- Prevent noise propagating through supporting structure.
- Suffer from high frequency internal resonances.
- Nb. different motivation.

AMM as 1D chain

Metamaterials — according to Wikipedia

"A material engineered to have a property that is not found in nature"

AMM as 1D chain

Metamaterials — according to Wikipedia

"A material engineered to have a property that is not found in nature"

AMM as 1D chain

Metamaterials — according to Wikipedia

"A material engineered to have a property that is not found in nature"

Standard AMM: Mass-in-mass chain

Equations of motion

$$m \ddot{u}_j + k (2 u_j - u_{j-1} - u_{j+1}) + K(u_j - v_j) = 0$$

 $M \ddot{v}_j + K (v_j - u_j) = 0$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Standard AMM: Mass-in-mass chain

Dispersion relation

$$mM\omega^4 - \{K(m+M) + 2k(1 - \cos q)\}\omega^2 + 2(1 - \cos q) = 0$$

Band diagrams: m = 1; M = 0; $K = k = \pi^2/4$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

Band diagrams: m = 1; M = 1; $K = k = \pi^2/4$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Band diagrams: m = 1; M = 1; $K = k = \pi^2/4$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Band diagrams: m = 1; M = 1; $K = k = \pi^2/4$

Band diagrams: m = 1; $K = k = \pi^2/4$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Band diagrams: m = 1; $K = k = \pi^2/4$

|▲□▶▲圖▶▲≣▶▲≣▶ | ≣|||の久⊘

Band diagrams: m = 1; $K = k = \pi^2/4$

Basic element (the black box)

Lightweight attachments = geometry rigid truss $\xrightarrow{\text{force } f_1}_{\text{displ } u_1} (m)$ $\xrightarrow{\text{force } f_2} \xrightarrow{\text{displ} u_2}$ k_0 т Linearised equations of motion $-f_{1} = \omega^{2} \left(m + \frac{M}{2} \left(1 + \gamma^{2} \right) \right) u_{1} + \frac{\omega^{2} M}{2} \left(1 - \gamma^{2} \right) u_{2} + k_{0} (u_{2} - u_{1})$ $-f_{2} = \frac{\omega^{2} M}{2} (1 - \gamma^{2}) u_{1} + \omega^{2} \left(m + \frac{M}{2} (1 + \gamma^{2}) \right) u_{2} + k_{0} (u_{1} - u_{2})$

with geometrical parameter $\gamma = \cot \alpha$.

Basic element (the black box)

Basic element (the black box)

Lightweight attachments = geometry riaid truss force f_1 m α k_0 mCompliance and stiffness matrices $\begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = C_0 \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ and $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = D_0 \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$ Resonance: $\omega_0^2 = \frac{2 k_0 (m + M)}{m^2 + m M (1 + \gamma^2) + M^2 \gamma^2}$ Anti-resonance: $\omega_*^2 = \frac{2 k_0}{M(\gamma^2 - 1)}$ for $\gamma < 1$, $(\alpha < \pi/4)$

Infinite chain

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Infinite chain

Transfer matrix P (encodes all info):

$$\left(egin{array}{c} v_2 \ g_2 \end{array}
ight) = P \left(egin{array}{c} v_1 \ -g_1 \end{array}
ight) ext{ with e'vals } \lambda_{\pm} = \exp(\mathrm{i}\,q)$$

where q = Bloch - Floquet wavenumber.

• ω_* unchanged but ω_0 is (in general).

Limit 1: Yilmaz & Hulbert (Phys Lett A, 2010)

Limit 1: Band diagrams $k_0/m_0 = \pi^2/4$, $\mathcal{M}/m_0 = 0.1$

- Resonant frequency ω_0 controls band height.
- Anti-resonant frequency ω_{*} controls gap "depth".

Limit 2: Bobrovnitskii (Acoust Phys, 2014)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Limit 1: Band diagrams $K/M = \pi^2/2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Acoustical branch (not shown) on *q*-axis.

Back to original system with $K = k_0$

Band diagrams: M/m = 0.2; $K/M = \pi^2/2$

- ... at expense of acoustical and optical branches.
- Anti-resonance ω_* controls concavity of optical branch.

Mass-in-mass: M/m = 0.1; $\omega/\pi = 0.45$

200

Our system: M/m = 0.1; $\omega/\pi = 0.45$; $\alpha = \pi/16$

▲□▶▲□▶▲∃▶▲∃▶ = シのので

Final slide

Summary

- Toy model.
- Attached masses excite resonance/anti-resonance to suppress low-frequency vibrations.
- Lightweight attachments can achieve this using geometry.

At KOZWaves 2020...

Alex's idea:

- Nonlinearity (physical or geometrical) to transfer energy to higher frequencies (and damp).
- Modulational instability between acoustical and optical branches for efficient energy transfer.