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AMMs using lightweight attachments

General area

Seek effective low-frequency noise isolation using AMMs.

Components that cause noise pollution.

Without using heavy elements.

Heavy = impractical for applications.

Use inerters

Inertial force proportional to relative motion.
E.g. J-dampers in F1 racing car suspension systems.
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Frandsen et al, J Appl Phys, 2016



AMMs using lightweight attachments

Frandsen et al, J Appl Phys, 2016

". . . band gaps that are exceedingly wide and deep
. . . as much as twenty times less added mass

compared to what is needed in a standard local
resonator configuration"



An application (Dylejko & MacGillvray, 2014)

Vibration isolators
Prevent noise propagating through supporting structure.
Suffer from high frequency internal resonances.
Nb. different motivation.



AMM as 1D chain

Metamaterials — according to Wikipedia

"A material engineered to have a property that is not
found in nature"

Model framework: 1D chain

black boxblack box black box
vibration in vibration out

where something "meta" happens in the boxes.

No dissipation.
Infinite chain “facilitates analysis".
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Standard AMM: Mass-in-mass chain

mm m

MM M

k k

K K K

uj(t)uj−1(t) uj+1(t)

vj(t)vj−1(t) vj+1(t)

Equations of motion

m üj + k (2 uj − uj−1 − uj+1) + K (uj − vj)= 0

M v̈j + K (vj − uj)= 0

Dispersion relation

m M ω4 − {K (m + M) + 2 k (1− cos q)} ω2 + 2 (1− cos q) = 0



Standard AMM: Mass-in-mass chain

mm m

MM M

k k

K K K

uj(t)uj−1(t) uj+1(t)

vj(t)vj−1(t) vj+1(t)

Write
uj = û ei (q j−ω t) and vj = v̂ ei (q j−ω t)

where ω = angular freq; q =Bloch–Floquet waveno ∈ (−π, π].

Dispersion relation

m M ω4 − {K (m + M) + 2 k (1− cos q)} ω2 + 2 (1− cos q) = 0



Band diagrams: m = 1; M = 0; K = k = π2/4
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Band diagrams: m = 1; K = k = π2/4
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Band diagrams: m = 1; K = k = π2/4
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Band diagrams: m = 1; K = k = π2/4

M = 9m
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"band gap" = no propagation

anti-resonance: ω2 = ω2
∗ ≡

K
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Lower resonances
= lower band gap

But mass increases



Basic element (the black box)

Lightweight attachments = geometry

mm

M

M

k0

displ u1

force f1

displ u2

force f2α

rigid truss

Linearised equations of motion

−f1 =ω2
(

m +
M
2

(1 + γ2)

)
u1 +

ω2 M
2

(1− γ2)u2 + k0(u2 − u1)

−f2 =
ω2 M

2
(1− γ2)u1 + ω2

(
m +

M
2

(1 + γ2)

)
u2 + k0(u1 − u2)

with geometrical parameter γ = cotα.



Basic element (the black box)

Lightweight attachments = geometry

mm

M

M

k0

displ u1

force f1

displ u2

force f2α

rigid truss

Compliance and stiffness matrices(
f1
f2

)
= C0

(
u1
u2

)
and

(
u1
u2

)
= D0

(
f1
f2

)
Resonance: ω = ω0 st. det C0 = 0

Anti-resonance: ω = ω∗ st. C0 = diag C0, D0 = diag D0



Basic element (the black box)

Lightweight attachments = geometry

mm

M

M

k0

displ u1

force f1

displ u2

force f2α

rigid truss

Compliance and stiffness matrices(
f1
f2

)
= C0

(
u1
u2

)
and

(
u1
u2

)
= D0

(
f1
f2

)

Resonance: ω2
0 =

2 k0 (m + M)

m2 + m M (1 + γ2) + M2 γ2

Anti-resonance: ω2
∗ =

2 k0

M (γ2 − 1)
for γ < 1, (α < π/4)



Infinite chain

Connect basic elements with springs

m m
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Transfer matrix P (encodes all info):(
v2
g2

)
= P

(
v1
−g1

)
with e’vals λ± = exp(i q)

where q = Bloch–Floquet wavenumber.

ω∗ unchanged but ω0 is (in general).
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Limit 1: Yilmaz & Hulbert (Phys Lett A, 2010)

K →∞; M =M/2; m = m0/2

m0m0 m0

M M

ω2
0 →

4 k0

m0 +M γ2 =
2 k0

m + M γ2

ω2
∗ →

4 k0

M (γ2 − 1)
=

2 k0

M (γ2 − 1)
for α < π/4.



Limit 1: Band diagrams k0/m0 = π2/4,M/m0 = 0.1
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Resonant frequency ω0 controls band height.

Anti-resonant frequency ω∗ controls gap “depth".



Limit 2: Bobrovnitskii (Acoust Phys, 2014)

k0,m→ 0

M

M

M

M

M

M

K K

ω2
0 → 0 and ω2

∗ → 0

Basic element has no restoring.

Always have branch ω(q) = 0.



Limit 1: Band diagrams K/M = π2/2

α = 3π
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Acoustical branch (not shown) on q-axis.



Back to original system with K = k0

m m

M

M

m m

M

M

m m

M

M

k0 k0

ω2
0 =

2 k0

m + M γ2 and ω2
∗ =

2 k0

M (γ2 − 1)

Same resonance and anti-resonance as Yilmaz chain.

Half the attached mass, but. . .



Band diagrams: M/m = 0.2; K/M = π2/2
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. . . at expense of acoustical and optical branches.

Anti-resonance ω∗ controls concavity of optical branch.



Mass-in-mass: M/m = 0.1; ω/π = 0.45

mm m

M
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Our system: M/m = 0.1; ω/π = 0.45; α = π/16

m mm m

M

M
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Final slide

Summary

Toy model.

Attached masses excite resonance/anti-resonance to
suppress low-frequency vibrations.

Lightweight attachments can achieve this using geometry.

At KOZWaves 2020. . .
Alex’s idea:

Nonlinearity (physical or geometrical) to transfer energy to
higher frequencies (and damp).

Modulational instability between acoustical and optical
branches for efficient energy transfer.
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